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A B S T R A C T

We study the optimal execution problem in a principal–agent setting. A client contracts to purchase from
a dealer. The dealer hedges, buying from the market, creating temporary and permanent price impact. The
client chooses a contract, which specifies payment as a function of market prices; hidden action precludes
conditioning on the dealer’s hedging trades. We show the first-best benchmark is theoretically achievable with
an unrestricted contract set. We then consider weighted-average-price contracts, which are commonly used.
In the continuous-time limit, the optimal weighting entails a constant density at interior times and discrete
masses at the extremes.

1. Introduction

When trading large volumes in financial markets, two frictions play important roles: price impact and agency conflicts. Owing to price impact,
it is typically desirable to split a larger ‘parent order’ into a number of smaller ‘child orders’ rather than to trade all at once. Determining precisely
how to create that split is a complex problem, as one must assess how each child order will affect prices obtained for future child orders. A literature
on optimal execution considers that problem, addressing how an institution ought to proceed if handling execution in house. Yet, pension funds
and other institutions often outsource execution, in which case agency conflicts also arise. Although these agency conflicts are deeply appreciated
by practitioners and regulators, they have so far received little attention in the literature. Analyzing a setting with both price impact and agency
conflict, we show that these frictions interact in important and subtle ways.

Specifically, we model a situation in which an institution (‘the client’ henceforth) contracts with a dealer, agreeing to conduct a block trade:
a single, large off-market transaction. The dealer would then pursue offsetting trades on the market, effectively assuming the complexities of
execution. It remains to determine how the block trade between the client and dealer will be priced. In practice, many trading arrangements use
some weighted average of the market prices prevailing over the execution window. For example, block trades are often priced at the time-weighted
average price (TWAP) prevailing on the market, as in a guaranteed TWAP contract, or at the price prevailing at the end of the execution window,
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as in a guaranteed market-on-close (MOC) contract.1 Because these contracts transfer some of the price risk burden onto the client, one economic
justification for them is risk aversion on the part of the dealer. Indeed, it is appropriate to account for risk aversion because these trades are often
large, and because dealers may be reluctant to take on risk due to regulation requiring them to hold capital in amounts corresponding to their
exposure. Yet, questions remain: Are either of these common contracts optimal for the client—or at least optimal in some class? If not, how could
she do better for herself?

To answer these questions, we formulate this interaction as a problem of contracting under moral hazard, with the client as the principal and the
dealer as the agent. The friction is that the client cannot directly observe the offsetting on-market trades that the dealer makes, but only the realized
time series of market prices. Because the dealer’s trading creates price impact, market prices are signals of the dealer’s actions, but only noisy ones.
We first solve the model in discrete time, then characterize the continuous-time limit. Although the contract that we derive is in general neither of
the commonly-used contracts mentioned above, interestingly and perhaps surprisingly, it does incorporate features of both: in the continuous-time
limit, the optimal contract puts discrete weights on the initial and terminal prices, and it weights interior prices with a constant density.

These results apply to situations faced by pension funds, mutual funds, endowments, or other institutions when outsourcing execution of their
large trades in fixed income, foreign exchange, or equity blocks. These large trades typically entail large transactions costs: for example, Nasdaq
(2022) and SIFMA (2021) estimate institutional transaction costs for U.S. equities of around $70 billion per year, nearly all of which are attributable
to price impact. Given the complexities of order execution and the sums involved, this setting is rife with potential conflict between the interests of
dealers and clients. Cognizant of this, FINRA Rule 5270 prohibits dealers from trading on ‘‘non-public market information concerning an imminent
block transaction’’, also called ‘‘front-running’’. However, that same rule provides an exemption ‘‘for the purpose of fulfilling, or facilitating the
execution of, the customer block order’’ (FINRA, 2013), leaving ample scope for conflict regarding the timing of trades made for this purpose. The
potential for conflict is also recognized by umbrella agreements between dealers and their institutional clients.2 Furthermore, ample anecdotal
evidence highlights that these conflicts of interest have real and sizable implications for transaction costs (e.g., Traders Magazine, 2005a,b;
Bloomberg, 2020, 2022a,b, 2024a,b; The Wall Street Journal, 2022a, 2024). These transaction costs might be reduced if prevailing arrangements
were modified to more closely resemble the contractual arrangements that we derive.

Model. The client seeks to buy a fixed amount of some security. (Symmetric results apply for selling.) At time zero, the client offers a contract
to the dealer. A contract is an agreement that the client and dealer will conduct an off-market trade at time 𝑇 + 1, the price of which will be a
function of market prices (𝑝1,… , 𝑝𝑇 )⊤. If the dealer accepts the offered contract, then he hedges with offsetting trades on the market during the
trading periods {1,… , 𝑇 }. In modeling how these trades affect the dynamics of prices, we assume a canonical market model: essentially the baseline
version of Almgren and Chriss (2001), with additive price shocks and linearity in both permanent and temporary price impact.

Mathematically, the client’s problem is to choose a contract and a recommended trading strategy for the dealer to pursue subject to individual
rationality and incentive compatibility constraints. The first-best benchmark is what would be optimal in lieu of the hidden-action friction, that is,
if the dealer’s on-market trades were observable to the client. In that case, the problem in fact reduces to a well-known optimal execution problem
whose classic solution entails trading an equal amount in each period. Our main results highlight how outcomes change due to agency conflicts,
as well as which contracts perform well in light of them.

Results. What is an optimal contract? Our main analysis optimizes over contracts that are weighted averages of market prices. This is for both
analytical tractability and realism. Indeed, as a benchmark, we consider the situation without any restrictions on the contract’s functional form.
In that case, the client could approximate her first-best payoff arbitrarily closely via contracts that impose very large penalties with very low
probability. Such contracts, however, seem impractical and especially vulnerable to model misspecification. Weighted-average-price contracts,
in contrast, seem more realistic. In fact, many contracts used in practice are in this class. What is not obvious, however, is whether these
commonly-used contracts are optimal in this class—and if not, what the optimum is.

Our main result for the discrete-time formulation characterizes the optimal weighted-average-price contract in terms of the parameters of the
model: the market parameters that govern price impact and the dealer’s degree of risk aversion. We denote this contract 𝝉∗ = (𝜏∗1 ,… , 𝜏∗𝑇 )

⊤, where 𝜏∗𝑡
represents the weight on the period-𝑡 price. Although in closed form, the general formula for 𝝉∗ is complicated and difficult to analyze. Nevertheless,
numerical experimentation suggests a great deal of interesting structure (all of which is consistent with what we subsequently prove to hold in
the continuous-time limit). It suggests that the optimal contract is U-shaped (i.e., 𝜏∗1 ≥ 𝜏∗2 ≥ ⋯ ≥ 𝜏∗

⌈𝑇 ∕2⌉ ≤ ⋯ ≤ 𝜏∗𝑇−1 ≤ 𝜏∗𝑇 ), with a severity that is
trengthened by permanent price impact, weakened by temporary price impact, and weakened by the dealer’s risk aversion. We also show formally
hat the optimal contract is symmetric (i.e., 𝜏∗𝑡 = 𝜏∗𝑇+1−𝑡 for all 𝑡). Finally, we derive a closed-form solution for the trading behavior that the dealer
elects in response to the optimal weighted-average-price contract 𝝉∗. It is described by a vector of trades 𝒙∗ = (𝑥∗1 ,… , 𝑥∗𝑇 )

⊤, where 𝑥∗𝑡 is the volume
raded in period 𝑡.

To understand the intuition for these patterns, consider first the dealer’s trading incentives. His profit is the difference between what he receives
rom the client (specified by the contract) and the costs of his on-market hedging trades. So, given an offered weighted-average-price contract, he
an guarantee himself a profit of zero by selecting trading weights that perfectly mirror the contract weights. But he can do better by shifting some
rading volume from periods with high expected prices to periods with low expected prices. Permanent price impact raises later prices relative to
arlier ones and consequently generates a frontloading motive for the dealer—an incentive to select a trading strategy that differs from the offered
ontract by weighting early periods more heavily. This incentive to frontload is consistent with dealer behavior observed in various asset classes,
ncluding foreign exchange (Bloomberg, 2016), interest rates swaps (Risk.net, 2021), and options (Bloomberg, 2019).

Turning now to the client’s problem, the optimal contract reflects a balance between two forces. On the one hand, permanent price impact
eads prices to rise over the trading interval. Thus, if the dealer’s trading strategy – and hence price dynamics – were fixed, the client would prefer

1 In practice, it is sometimes more common to use the volume-weighted average price (VWAP). Our analysis does not consider this, however, as we do not
ave market volumes in our model. The reason is that, while we build on a canonical, off-the-shelf model of price impact, there is no analogously canonical
odel to specify how market volumes are determined. Within our model, TWAP is the closest analogue to VWAP.
2 For example, regarding orders of institutional equities clients, HSBC Securities Inc. (HSI) states that ‘‘[p]rior to the execution of a guaranteed price order, HSI
ay establish a hedge through single or multiple trades that serve to offset HSI market risk associated with facilitating these transactions. This hedge will usually

nvolve principal trades (possibly throughout the day) in the same security. . . such activity may ultimately affect the agreed guaranteed benchmark price’’ (HSBC,
2

022). Such disclosures are standard (e.g., Goldman Sachs, 2017; Morgan Stanley, 2022).
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weighting earlier periods in her contract. On the other hand, the dealer’s trading strategy is endogenous. Moreover, permanent price impact means
that frontloaded trading strategies raise all prices. The client would therefore prefer for the dealer to use a less frontloaded strategy, but, given the
dealer’s aforementioned frontloading motive, this requires the client to weight later periods in her contract. The combination of these incentives
to weight early and late periods leads to a symmetric and U-shaped optimal contract. Moreover, because permanent price impact drives these
incentives, it tends to strengthen the severity of both the U-shape and the dealer’s ultimate frontloading. In contrast, temporary price impact and
risk aversion induce other motives for the dealer and opposite effects.

Finally, we turn to the continuous-time limit of our discrete-time model. In this limit, the optimal contract takes a strikingly simple form, which
can be seen as an extreme U-shape: atoms of equal mass at the two extreme times and a constant density at interior times. The dealer’s best response
is similarly simple: it entails the same constant density at interior times, as well as atoms at the extreme times where, reflecting his frontloading
motive, the initial atom is three times the terminal atom. We also prove comparative statics for this continuous-time limit that are consistent with
the aforementioned numerical experimentation for the discrete-time model. The mass at the extreme times – and hence the severity of the optimal
contract’s U-shape – is increasing in permanent price impact and decreasing in the dealer’s risk aversion. Interestingly, temporary price impact
does not affect the solution in this limit, because two opposing forces offset each other: on the one hand, temporary price impact raises prices and
hence the client’s costs (if the dealer’s trades are held fixed), but on the other hand, temporary price impact also partially counteracts the dealer’s
frontloading motive, reducing the client’s costs.

To quantify our findings, we perform a back-of-the-envelope calculation in which we compare our optimal contract against the two commonly-
used contracts mentioned before. We argue that, for realistic parameters, transaction costs (as measured by implementation shortfall) under our
optimal contract are 9.8 percent lower than those under the guaranteed TWAP contract and 40.1 percent lower than those under the guaranteed
MOC contract. For a trade valued at $100 million, the cost savings could be hundreds of thousands of dollars. While we hesitate, in this paper,
to precisely quantify these gains, this analysis highlights potential for substantial improvement upon the status quo, even while staying within the
class of weighted-average-price contracts.

Related literature. A long tradition of models study contracting in financial settings. Often studied are delegated portfolio management, where the
gent selects a financial portfolio (e.g., Bhattacharya and Pfleiderer, 1985; Carpenter, 2000; Buffa et al., 2022), and delegated asset management,
here the agent manages capital invested in a risky asset and can secretly divert returns (e.g., DeMarzo and Fishman, 2007; Di Tella and Sannikov,
021). In this paper, the agent performs a different financial task—namely, scheduling the execution of a large trade. These actions are unobserved
y the client, and, therefore, this problem belongs to the large literature on moral hazard.3

Another connection is to principal–agent models in which the agent controls when an action is taken. For example, this is the case if the agent
akes an irreversible stopping decision (e.g., Kruse and Strack, 2015; Grenadier et al., 2016) or chooses the timing of a disclosure (e.g., Curello

nd Sinander, 2024) or report (e.g., Madsen, 2022). Such problems also arise in the literature on revenue management (e.g., Board and Skrzypacz,
016; Garrett, 2016), in which consumers decide when to buy.

The trading aspects of our model closely relate to the literature on optimal execution (e.g., Bertsimas and Lo, 1998; Almgren and Chriss, 2001;
bizhaeva and Wang, 2013). In that literature, a trader solves how to optimally work an order across time, taking as given an exogenously-specified

market model’ that governs how her trades affect price dynamics. Solving for the first-best benchmark of our model is equivalent to such a problem.
oreover, our specification of the market model follows the baseline cases of some of those classic models. Our derivation of the first-best trading

trategy therefore replicates classic results from that literature. Nevertheless, we depart from that literature in that our primary focus is on the
econd-best problem, where the key friction is that the dealer’s on-market trades are actions hidden from the client.

The most related paper is Baldauf et al. (2022).4 It begins with a certain commonly-used contract (the guaranteed VWAP contract, cf. footnote 1),
hen derives conditions on the market model that would rationalize this contract as optimal. Among the conditions required for that contract’s
ptimality is that price impact has no permanent component. This paper takes the opposite approach: it begins instead with a canonical market
odel that allows for both permanent and temporary price impact, then derives the optimal weighted-average-price contract. Outside of special

ases, this optimum is not a commonly-used contract in itself—nevertheless, it suggests simple and useful modifications to prevailing arrangements.
he key innovation is allowing for a permanent component of price impact. This makes the problem conceptually different: it becomes genuinely
ynamic in the sense that the ordering of time periods matters. Allowing for permanent price impact is also valuable because of its prominent role
n theoretical models (e.g., Kyle, 1985) and because of its empirical importance (Biais et al., 2005).

utline. The remainder of the paper is organized as follows. Section 2 formulates the model in discrete time. Section 3 solves for the first-best
enchmark. Section 4 derives a general discrete-time solution for the second-best, discusses its comparative statics, and considers several special
ases. Section 5 analyzes the continuous-time limit. Section 6 concludes.

. Model

Roughly speaking, our model combines a canonical model of price impact (à la Bertsimas and Lo, 1998; Almgren and Chriss, 2001) with
canonical model of contracting with hidden actions (à la Holmström, 1979). A client (the principal) offers her dealer (the agent) a contract

egarding a trade between them.5 If the dealer accepts, he prepares for the trade by acquiring an offsetting position from the market. The main
riction is hidden action: the client cannot observe the dealer’s precise sequence of on-market trades.

3 Particularly related are models set in continuous time (e.g., Holmström and Milgrom, 1987; Sannikov, 2008) and, especially, analyses of the continuous-time
imits of discrete-time models (e.g., Hellwig and Schmidt, 2002; Biais et al., 2007).

4 Edelen and Kadlec (2012) study a related problem involving delegated trading. The primary difference is that they study agency trading (where the client
ays the realized execution costs). The friction is that effort, which can lead to a better execution price, is unobservable to the client. In contrast, we study
rincipal trading (where the payment is contracted in advance and need not equate to realized execution costs). The friction is that the on-market trades, which
nfluence the contracted payment, are unobservable to the client.

5 In modeling only a single dealer and a single client, we abstract away from the possibility that, in practice, a dealer could receive potentially offsetting
rders from separate clients. We also abstract away from the question of how the client should select a dealer. See Baldauf and Mollner (2024) for an analysis
3

f the latter issue.
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2.1. Contracting environment

Client. The client needs to trade a fixed quantity of a particular security, which we normalize to a purchase of one share. She is risk-neutral.

Dealer. The dealer has constant absolute risk aversion (CARA), with coefficient 𝜆. To simplify notation, we use 𝑢(𝑤) = −exp(−𝜆𝑤) for the dealer’s
utility function. In addition to the usual sources, the dealer’s risk aversion might also originate from leverage/margin constraints or from constraints
on equity capital, as in the literature on limits to arbitrage (surveyed by Gromb and Vayanos, 2010).

Time. At time 0, the client offers a contract, which the dealer either accepts or rejects. The contract specifies a price at which the client will
purchase one share from the dealer at time 𝑇 + 1. In between are a discrete number of trading periods 𝑡 ∈ {1,… , 𝑇 }, where 𝑝𝑡 denotes the market
price in period 𝑡.

Contracts. The client can contract only on market prices.6 In particular, she cannot contract directly on the dealer’s trades. This assumption reflects
the fact that on-market trading is anonymous in most settings. Moreover, the client could not reasonably ask the dealer to disclose a complete record
of his trading, as that would expose the dealer’s unmodeled trade secrets and trading relationships.7 Formally,  will denote a (possibly strict)
subset of the measurable real-valued functions with argument 𝒑 = (𝑝1,… , 𝑝𝑇 )⊤. And 𝜏 ∈  will denote a typical contract. We discuss several
candidates for  in Section 2.4.

2.2. Market model

On-market trades. If the dealer accepts the contract, then he must purchase the required share on the market. Letting 𝑥𝑡 denote the number of
shares purchased by the dealer in period 𝑡, we therefore require ∑𝑇

𝑡=1 𝑥𝑡 = 1.

Price dynamics. Recalling that 𝑝𝑡 denotes the market price in period 𝑡, we assume the dynamics

𝑝𝑡 = 𝑝0 + 𝛾𝑥𝑡 + 𝜃
𝑡

∑

𝑠=1
𝑥𝑠 +

𝑡
∑

𝑠=1
𝜀𝑠.

Thus, 𝜃 ≥ 0 parametrizes permanent price impact,8 𝛾 ≥ 0 temporary price impact, and 𝑝0 the initial price level. Finally, 𝜀𝑠 represents the price
shock in period 𝑠, which we assume is an independent draw from 𝑁(0, 𝜎2), where 𝜎 > 0. To avoid degenerate solutions, we assume throughout
that at least one of 𝜃 and 𝛾 is strictly positive.

Remark 1. This type of specification is widely used by practitioners, mainly because it is simple, tractable, and because it captures many empirical
facts about markets (e.g., that liquidity is limited over the trading horizon, even when trade is for reasons other than information). This specification
is, furthermore, canonical and standard in the literature. For example, it nests the basic case of Bertsimas and Lo (1998), it is nested by Gârleanu
and Pedersen (2013), and it closely relates to the linear case of Almgren and Chriss (2001). Finally, although our analysis takes these price dynamics
as exogenous, both these and related dynamics can be readily micro-founded (as in, e.g., Gârleanu and Pedersen, 2016; Kyle et al., 2018).9

Trading strategies. We denote by 𝑡 the 𝜎-algebra generated by the price shocks 𝜀1, 𝜀2,… , 𝜀𝑡. A trading strategy is a random vector 𝒙 = (𝑥1,… , 𝑥𝑇 )⊤

such that 𝑥𝑡 is 𝑡−1-measurable for all 𝑡 and ∑𝑇
𝑡=1 𝑥𝑡 = 1 almost surely. We denote the set of trading strategies by  . Due to the measurability

assumption on 𝒙, 𝑡 is also the 𝜎-algebra generated by 𝑝1, 𝑝2,… , 𝑝𝑡 and therefore corresponds to the dealer’s information at period 𝑡 available from
the prices realized in previous periods.

Remark 2. A special class of trading strategies are those in which the dealer does not use any information in selecting his on-market trades, so
that the entire trajectory of trades is determined ex ante. Such a trading strategy can also be thought of as a vector 𝒙 ∈ R𝑇 . We refer to these as
the deterministic trading strategies.

Remark 3. The requirement ∑𝑇
𝑡=1 𝑥𝑡 = 1 precludes any net change in the dealer’s inventory. The dealer merely intermediates between the client

and the market, neither trading with the client out of his own inventory nor taking on a proprietary position of his own. We therefore shut down
certain dealer misbehavior: the dealer’s trading in our model does not meet the definition of illegal front-running, but rather that of permitted
transactions for the purpose of fulfilling a client block order, under FINRA Rule 5270. This also distinguishes our model from the literature on dual
trading (e.g., Röell, 1990; Fishman and Longstaff, 1992; Bernhardt and Taub, 2008), which considers dealer–client conflicts that arise if the dealer
can either front-run or trade alongside a client order. Instead, our analysis focuses on conflicts pertaining to timing of the dealer’s hedging trades.

6 We therefore assume that the client can observe the full sequence of market prices. This is appropriate for modeling asset classes that are transparent,
ith publicly available trading data (e.g., equities). But other asset classes are more opaque, with less accessible data (e.g., foreign exchange), which precludes

ontracting on prices in arbitrary ways. Nevertheless, a third party with access to data – perhaps a platform or regulator – could compute a pricing benchmark
nd make it available for contracting. For such asset classes, our analysis can be reinterpreted to have implications for the design of those benchmarks. See
ection 5.1 of Baldauf et al. (2022) for a more detailed discussion of the connection.

7 In principle, the client might ask the dealer to disclose a redacted record of his trading. However, the client should not expect this to help, as the dealer
could costlessly generate any disclosure. To make this formal, suppose the trades that the dealer discloses must sum to the one share that he sells to the client,
i.e., ∑𝑇

𝑡=1 𝑥
disclose
𝑡 = 1. And he can disclose only trades that he actually conducted. But he need not disclose a complete record of all trades he conducted. As claimed,

the dealer can costlessly generate any disclosure. Indeed, suppose he wishes to pursue trading strategy 𝒙, yet disclose a trading record 𝒙disclose. He can do this by
making three child trades in each period 𝑡: (i) buy 𝑥𝑡 shares, (ii) buy 𝑥disclose𝑡 shares, and (iii) sell 𝑥disclose𝑡 shares. He would then disclose only the components (ii).
Yet, because components (ii) and (iii) offset, price dynamics and the dealer’s net trading are equivalent to those under 𝒙.

8 As is common in the literature, we intend ‘‘permanent’’ to refer to whatever price impact does not revert over the trading horizon. For example, if the trading
horizon is one day, then price impact that reverts the next morning can be called permanent for our purposes, even though it does not literally last forever.

9 Other models micro-found only the permanent component of price impact (e.g., Kyle, 1985). Accordingly, purely permanent price impact is a relevant special
case (which we analyze in Section 4.3). As we will see, this special case is a theoretically interesting one also, because permanent price impact is what underlies
the model’s primary economic forces.
4
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2.3. The client’s problem

The client’s problem is to choose a contract and a recommended trading strategy for the dealer to pursue subject to individual rationality and
incentive compatibility constraints.10 There is hidden action in that the client cannot directly observe the dealer’s trades; hence, the contract must

ake the recommended trading strategy incentive compatible. Although the client observes prices, they constitute only a noisy signal of the dealer’s
rades because they are also affected by shocks. Mathematically, the client solves the program

min
𝝉∈ ,𝒙∈

E[𝜏(𝒑)] subject to

E[𝑢(𝜏(𝒑) − 𝒙 ⋅ 𝒑)] ≥ 𝑢(0), (IR)

𝒙 ∈ arg max
�̂�∈

E[𝑢(𝜏(𝒑) − �̂� ⋅ 𝒑)]. (IC)

he form of the (IR) and (IC) constraints follow from the facts that the dealer’s revenue (from the client) is 𝜏(𝒑) and his cost (from on-market
rading) is 𝒙 ⋅ 𝒑.11

.4. The contract set

All that remains is to specify the set of contracts over which the client optimizes.

nrestricted set. A potential baseline is the setting in which a contract can be any measurable, real-valued function of market prices. We denote
his contract set  all. Although this unrestricted set may be interesting from a theoretical perspective, it would permit contracts that are unrealistic,
ither in their complexity or in the severity of the punishments they impose for certain price-path realizations. Indeed, Mirrlees has observed that
n classic moral hazard settings with normally-distributed noise and no restrictions on the contract’s functional form, the agency friction essentially
isappears, in the sense that the first-best outcome can be approximated arbitrarily closely using contracts that prescribe massive punishments
or very low realizations of output (Bolton and Dewatripont, 2004, Sec. 4.3). Given the structure of our model, similar issues arise here when
ptimizing over an unrestricted set of contracts. See Section 3.2 for details.

eighted-average-price contracts. Motivated by the unrealistic contracts that emerge when optimizing over an unrestricted contract set, it seems
ppropriate to impose some restrictions. In particular, our main analysis will optimize over contracts that are weighted averages of market prices.
lthough these weights will be nonnegative in the optimum, we do not constrain them to be. Thus, a contract can be thought of as a vector
∈
{

(𝜏1,… , 𝜏𝑇 )⊤ ∈ R𝑇 |
|

|

∑𝑇
𝑡=1 𝜏𝑡 = 1

}

, which stipulates that the client will pay the dealer ∑𝑇
𝑡=1 𝜏𝑡𝑝𝑡. We denote this contract set  wa.

Although it is restrictive to focus only on contracts that are weighted averages of market prices (rather than on arbitrary functions), this does
est some important examples of commonly-used contracts: special cases include 𝝉TWAP =

( 1
𝑇 ,… , 1

𝑇

)⊤
and 𝝉MOC = (0,… , 0, 1)⊤, which correspond

to what are known in practice as a guaranteed TWAP contract and a guaranteed MOC contract. We interpret our analysis as a search for the best
contract among those comparable in complexity to those already in use.

Affine contracts. Whereas our baseline analysis optimizes over the set of weighted-average-price contracts, an alternative would have been to
instead optimize over the set of affine functions of market prices, which is a superset. We do this in Online Appendix A. We denote this contract set
 affine. One reason it is interesting is that it contains fixed-price contracts (i.e., contracts specifying a payment that is constant in the market prices).
And fixed-price contracts are interesting because, in the special case where the dealer is risk neutral, some fixed-price contract achieves the client’s
first-best payoff. This is for the same reason that, in classic models of contracting under moral hazard, a ‘sell-the-firm’ contract achieves first-best
when the agent is risk-neutral. Nevertheless, the optimal affine contract is qualitatively similar in many ways to the optimal weighted-average-price
contract.

3. First-best benchmark

3.1. First-best entails trading at a constant rate

Before solving the client’s problem itself, we begin with the first-best benchmark. To that end, we remove the friction of hidden action—that
is, we assume the client observes the dealer’s trades. We also exclude any frictions that might arise from restrictions on the contract’s functional
form. Mathematically, a contract is – for this section only – a measurable real-valued function with argument (𝒑,𝒙) ∈ R𝑇 × R𝑇 for ∑𝑇

𝑡=1 𝑥𝑡 = 1.12

In this setting, the client can implement any trading strategy she desires with a ‘forcing contract’ that imposes a large penalty if the dealer
deviates from the recommended trading strategy. And given concavity of 𝑢, it is optimal to satisfy (IR) by choosing 𝜏(𝒑,𝒙) = 𝒙 ⋅ 𝒑 when the dealer
does follow the recommendation. Plugging 𝜏(𝒑,𝒙) = 𝒙 ⋅ 𝒑 into her objective, the client’s problem becomes

min
𝒙∈

E[𝒙 ⋅ 𝒑].

In short, solving for the first-best trading strategy reduces to a problem of optimal execution.

10 In allowing the client to recommend a trading strategy to the dealer, this formulation follows classical models of moral hazard (e.g., Holmström, 1979).
ffectively, it assumes that the client can break the dealer’s indifference however she likes. This assumption is, however, irrelevant for our analysis. In particular,
he dealer will have a unique best response to most contracts we consider (cf. Lemma 3).
11 Alternatively, we can define a dynamic incentive compatibility constraint: for all 𝑡 = 1, 2,… , 𝑇 and 𝐴 ∈ 𝑡−1 with 𝑃 [𝐴] > 0, 𝒙 ∈ arg max

�̂�∈𝒙
𝑡

E[𝑢(𝜏(𝒑) − �̂� ⋅ 𝒑)|𝐴]

here 𝒙
𝑡 = {�̂� ∈  ∶ �̂�𝑠 = 𝑥𝑠 for 𝑠 < 𝑡}. This is equivalent to (IC). For details, see Online Appendix B.

12 For situations where the second-best analysis entails optimizing over a restricted contract space  ⊊  all, a perhaps more appropriate benchmark would be
o remove the friction of hidden action while preserving any frictions due to restrictions on functional form. Mathematically, a contract (for this benchmark only)
ould be a measurable real-valued function with argument (𝒑,𝒙) ∈ R𝑇 × R𝑇 for ∑𝑇

𝑡=1 𝑥𝑡 = 1, where for any fixed 𝒙, 𝜏(⋅,𝒙) ∈  . If  ⊇  wa, then this benchmark
oincides with what we derive below. One way to achieve the first-best in this setting is with a contract that, for any 𝒙, simply pays the dealer a weighted
verage of the market prices 𝒑 with weights that exactly mirror 𝒙. Under such a contract, 𝜏(𝒑,𝒙) = 𝒙 ⋅𝒑 for all 𝒙 and 𝒑, meaning that (IC) is satisfied (albeit only
ith equality) by rendering the dealer indifferent over all trading policies.
5
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In fact, because our market model is essentially the baseline case considered by Almgren and Chriss (2001), their results apply to this problem.
The first-best solution corresponds to what they would derive as the optimal trading strategy in the case where all weight is put on minimizing
the mean of implementation shortfall (and no weight on the variance). The classic result (also obtained by others, e.g., Bertsimas and Lo, 1998) is
that under these baseline conditions, the optimal strategy is to trade an equal amount in each period. We therefore have the following result:

Proposition 1. The first-best trading strategy is

𝒙FB =
( 1
𝑇
,… , 1

𝑇

)⊤
.

n the first best, the client’s expected costs of execution are 𝑝0 +
𝛾
𝑇 + 𝜃(𝑇+1)

2𝑇 .

For completeness, we also include a proof of this classic result in Appendix A.

Remark 4. Note that this first-best trading strategy is deterministic; that is, the entire trajectory of trades is determined ex ante. As we will see
with Lemma 3 in the next section, an analogous result holds for the second-best problem.

Remark 5. In the same way that canonical contracting models take it as an exogenous constraint that the principal cannot herself perform the
agent’s action, we assume that the client cannot access the market and directly implement 𝒙FB.13 Several considerations justify this approach. First,
the client might lack the dealer’s infrastructure, including market access, order-handling capabilities, low-latency trading technology, subscriptions
to exchange direct data feeds, risk management, trade reporting, and compliance—all of which require substantial fixed-cost investments. The client
might also lack the dealer’s qualification for volume-based discounts on exchange fees. Second, on-market trading might be more complex than
its reduced-form representation in our model (e.g., it might entail order splitting across multiple venues in each period), so that optimal trading
might not be as simple as the expression for 𝒙FB suggests. Rather, optimal trading might depend on specialized knowledge of market structure,
which the dealer is more likely to possess. Relative to a typical dealer, a typical client simply will not have invested nearly as many resources into
developing or fine-tuning smart-order routers and trading algorithms. One way to cast this idea within the language of the model is to suppose
that when the dealer trades, he creates price impact according to the dynamics described above (with price impact coefficients 𝛾 and 𝜃), but if the
client were to trade directly on the market, she would do so less efficiently (with price impact coefficients 𝛾client > 𝛾 and 𝜃client > 𝜃).

3.2. First-best is achievable with an unrestricted contract set

Having solved for the first-best benchmark, we now turn to the second-best problem (as formulated in Section 2.3). Our first observation is that
when the contract set is  all, the client can approximate her first-best payoff arbitrarily well. However, doing so may require contracts that are
complex, impractical, and unrealistic.

A special case. To illustrate, consider the special case of 𝛾 = 0, 𝜃 = 1, 𝜎 = 1, and 𝑇 = 2 periods. In this special case, we have 𝑝1−𝑝0 = 𝑥1+𝜀1, which
is normally distributed with mean 𝑥1 and unit variance. This suggests a contract scheme inspired by arguments Mirrlees has made in settings of
classic moral hazard: (i) pay the dealer the TWAP, 1

2 (𝑝1+𝑝2), (ii) pay also a flat commission 𝛿, but (iii) also impose a penalty of 𝐾 if 𝑝1−𝑝0 exceeds a
threshold 𝜁 . As derived above, first-best entails a choice of 𝑥1 =

1
2 . Without the penalty, the dealer would frontload his trading by choosing 𝑥1 >

1
2 .

(Proposition 4 will show this formally.) The penalty, however, counteracts this frontloading motive. Of course, a dealer who does not frontload is
also exposed to the penalty—which is why 𝛿 > 0 is needed to ensure that 𝑥1 = 1

2 is compatible with (IR). But the key is that normal distributions
have the property that extreme right-tail realizations are much more likely under a higher mean relative to a lower mean. Consequently, by setting
𝜁 and 𝐾 both very large, the penalty can be designed to deter frontloading by imposing a relatively large risk on a dealer who frontloads by
choosing 𝑥1 >

1
2 yet at the same time virtually no risk on a dealer who chooses 𝑥1 =

1
2 (which permits 𝛿 to be set very close to zero).

Formally, we would proceed as follows in this special case. Consider a class of contracts indexed by (𝜁, 𝛿, 𝐾), specifying payment

𝜏(𝒑) = 𝛿 + 1
2
(𝑝1 + 𝑝2) −𝐾1[𝑝1 − 𝑝0 > 𝜁].

Using 𝑥2 = 1 − 𝑥1, the dealer’s monetary payoff is

𝜏(𝒑) − 𝒙 ⋅ 𝒑 = 𝛿 +
( 1
2
− 𝑥1

)

(𝑝1 − 𝑝2) −𝐾1[𝑝1 − 𝑝0 > 𝜁] = 𝛿 +
(1
2
− 𝑥1

)

(𝑥1 − 1 − 𝜀2) −𝐾1[𝜀1 > 𝜁 − 𝑥1].

We then compute the dealer’s expected utility, differentiate with respect to 𝑥1, and evaluate at 𝑥1 =
1
2 to obtain

𝑑
𝑑𝑥1

log
(

−E
[

𝑢
(

𝜏(𝒑) − 𝒙 ⋅ 𝒑
)])|

|

|

|𝑥1=1∕2
= −𝜆

2
+

𝜙(𝜁 − 1∕2)
1

1−exp(−𝜆𝐾) −𝛷(𝜁 − 1∕2)
,

where 𝛷 and 𝜙 denote the standard normal CDF and pdf. See Online Appendix C for details.
For this contract to induce first-best trading, 𝑥1 = 1

2 must satisfy (IC), hence this derivative must equal zero. For all sufficiently large 𝜁 , there
exists a 𝐾 that does this. Formally, choose 𝜁 to ensure 𝜙(𝜁−1∕2)

1−𝛷(𝜁−1∕2) >
𝜆
2 ; this is possible because the inverse Mills ratio 𝜙(𝑥)

1−𝛷(𝑥) grows without bound
as 𝑥 increases. Let 𝜁 ≥ 𝜁 . Setting the above derivative equal to zero and solving for 𝐾, we obtain

𝐾 = 1
𝜆
log

(

1 +
𝜆∕2

𝜙(𝜁 − 1∕2) − 𝜆
2

[

1 −𝛷(𝜁 − 1∕2)
]

)

, (1)

13 For a model of endogenous choice between doing a block trade with a dealer versus working an order on the market, see Seppi (1990).
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which is well-defined because 𝜁 ≥ 𝜁 ensures that 𝜙(𝜁−1∕2)
1−𝛷(𝜁−1∕2) ≥ 𝜙(𝜁−1∕2)

1−𝛷(𝜁−1∕2) > 𝜆
2 . Given this value for 𝐾, choosing 𝑥1 = 1

2 leaves the dealer with
expected utility

E
[

𝑢
(

𝜏(𝒑) − 𝒙 ⋅ 𝒑
)]|

|

|

|𝑥1=1∕2
= −

exp (−𝜆𝛿)

1 − 𝜆
2
1−𝛷(𝜁−1∕2)
𝜙(𝜁−1∕2)

.

gain, see Online Appendix C for details.
For this contract to satisfy (IR), the dealer’s expected utility must be at least 𝑢(0) = −1. Choosing 𝛿 to make this constraint hold with equality,

we obtain

𝛿 = −1
𝜆
log

[

1 − 𝜆
2
1 −𝛷(𝜁 − 1∕2)
𝜙(𝜁 − 1∕2)

]

. (2)

Finally, note that the client can approximate her first-best payoff arbitrarily closely by setting 𝜁 ≥ 𝜁 sufficiently large, setting 𝐾 according to (1),
nd setting 𝛿 according to (2). Indeed, because 𝛿 is set to satisfy (IR), the dealer accepts such a contract. The client’s expected costs of execution
[

𝜏(𝒑)
]

are bounded above by E
[

𝛿 + 1
2 (𝑝1 + 𝑝2)

]

= 𝛿 + 𝑝0 +
1
2 (𝑥1 + 1). Because 𝐾 is set so that 𝑥1 = 1

2 satisfies (IC), this bound becomes 𝛿 + 𝑝0 +
3
4 .

Applying Proposition 1, the client’s first-best costs are exceeded by at most 𝛿. However, according to (2), 𝛿 can be made arbitrarily close to zero
by setting 𝜁 sufficiently large.

As we demonstrate in the proof of the following result, this construction can be extended to accommodate the model in its full generality.

Proposition 2. When the set of feasible contracts is  all, the client’s expected costs of execution can be made arbitrarily close to her first-best costs of
𝑝0 +

𝛾
𝑇 + 𝜃(𝑇+1)

2𝑇 .

Discussion. Although we have derived contracts that, within this model, permit the client to approximate her first-best payoff arbitrarily closely, we
do not view these contracts as realistic or practical. One issue is that the penalty size 𝐾 and penalty threshold 𝜁 must be fine-tuned to the economic
environment with an extraordinary degree of accuracy, leaving these contracts extremely susceptible to model misspecification.14 Moreover, to our
knowledge, these contracts do not bear even a remote resemblance to arrangements used in practice, which suggests that they might be prohibitively
complex to write or to enforce.

We therefore think it more meaningful to search for the optimum within a restricted contract set. As to how, precisely, to restrict the contract
set, it may be useful to return to the question of which arrangements are used in practice. Many contracts use some weighted average of the market
prices within the execution window (e.g., the guaranteed TWAP and guaranteed MOC contracts mentioned earlier). This motivates us to optimize
over weighted-average-price contracts, to see if we can improve on contracts that are in use while staying within this class of relatively simple
contracts.15

4. Discrete-time solution

We now turn to the optimal weighted-average-price contract. Although we are predominantly interested in the continuous-time limit, we find
it helpful to begin by deriving the general discrete-time solution and discussing its features. To that end, we consider several special cases, which
illuminate the economic forces underpinning the comparative statics of this general solution.

4.1. The dealer’s best response

Our first step in solving the client’s problem is to note that the (IR) constraint can be eliminated. Indeed, for any weighted-average-price contract
𝝉 ∈  wa, the dealer can guarantee himself the payoff 𝑢(0) by selecting the deterministic trading strategy 𝒙 = 𝝉. Intuitively, under this choice of 𝒙,
the dealer’s costs (his on-market trades) are the same weighted average of market prices that determines his revenue (his payment from the client).
He would then obtain a profit of zero—regardless of the realized price shocks. Because the dealer can in this way always guarantee himself his
outside option, it follows that (IC) actually implies (IR).

Our second step is to characterize the (IC) constraint. Lemma 3 states that, for any contract 𝝉 ∈  wa, the dealer has a unique best response.
Thus, (IC) simply requires the recommended trading strategy to be this best response.

Lemma 3. For any contract 𝝉 ∈  wa, the dealer has a unique best response in  , which is the deterministic trading strategy 𝒙 = 𝐹𝐴−1𝐸𝝉, where 𝐴, 𝐸,
and 𝐹 are 𝑇 × 𝑇 matrices explicitly given in terms of the parameters 𝜆, 𝜃, 𝛾 and 𝜎, as stated in Eq. (A.8) of Appendix A.

For the special case of 𝑇 = 2 periods, Lemma 3 simplifies considerably. Using 𝜏2 = 1 − 𝜏1, the dealer’s best response is

𝑥1 = 𝜏1 +
(1 − 𝜏1)𝜃 + (1 − 2𝜏1)𝛾

𝜆𝜎2 + 2𝜃 + 4𝛾
,

14 Discussing essentially the same point, Holmström and Milgrom (1987) write:

[These] near-optimal [contracts] are disturbing. In practice, one feels, schemes that adjust compensation only when rare events occur are not likely
to provide correct incentives for the agent in ordinary, high probability circumstances. Moreover, to construct the scheme, the principal requires very
precise knowledge about the agent’s preferences and beliefs, and about the technology that he controls. The [. . . ] scheme performs ideally if the model’s
assumptions are precisely met, but can be made to perform quite poorly if small deviations in the assumptions about the variance or (especially) about
the agent’s ability to control the probability of rare events are introduced. (p. 305)

15 Studying a different problem – how to formulate a manipulation-resistant benchmark price from a set of transactions – Duffie and Dworczak (2021) take a
7

elated approach, restricting attention to benchmarks that are weighted averages of transaction prices.



Journal of Financial Economics 160 (2024) 103901M. Baldauf, C. Frei and J. Mollner

a
o
b
t
(

A
r

S
a

i

D

d
i

m
a
t
d

and 𝑥2 = 1−𝑥1. We can see the following in this special case: (i) lim𝜃→∞ 𝑥1 =
1
2 (𝜏1 +1), which for 𝜏1 ∈ [0, 1] exceeds 𝜏1, which we interpret to mean

that permanent price impact creates a frontloading motive for the dealer; (ii) lim𝛾→∞ 𝑥1 = 1
2

(

𝜏1 +
1
2

)

, which we interpret to mean that temporary
price impact creates a smoothing motive for the dealer; and (ii) lim𝜆→∞ 𝑥1 = 𝜏1, which we interpret to mean that risk aversion creates a mirroring
motive for the dealer. Sections 4.3–4.5 show that these forces generalize beyond the special case of 𝑇 = 2.

According to the lemma, the dealer’s best response is in fact a deterministic trading strategy. To see the intuition, suppose that after accepting
contract 𝝉 ∈  wa, the dealer makes a tentative plan to pursue a particular deterministic trading strategy 𝒙. After implementing 𝑥1, the dealer

bserves 𝑝1, which reveals the realized 𝜀1. Would he want to re-optimize (𝑥2,… , 𝑥𝑇 )? The answer is no. The intuition is that 𝜀1 affects not only 𝑝1
ut also every future price. Then, given that the dealer’s revenue 𝝉 ⋅𝒑 and costs 𝒙 ⋅𝒑 are both weighted averages of the prices, 𝜀1 does not affect his
erminal wealth, so learning it is irrelevant. More generally, suppose that after implementing 𝑥𝑡, the dealer learns 𝜀𝑡. Would he want to re-optimize
𝑥𝑡+1,… , 𝑥𝑇 )? Again, no. This is because 𝜀𝑡 shifts the dealer’s terminal wealth by the constant 𝜀𝑡

∑𝑡−1
𝑠=1(𝑥𝑠 − 𝜏𝑠):

𝑇
∑

𝑡=1
(𝜏𝑡 − 𝑥𝑡)𝑝𝑡 =

𝑇
∑

𝑡=1
(𝜏𝑡 − 𝑥𝑡)

(

𝑝0 + 𝛾𝑥𝑡 + 𝜃
𝑡

∑

𝑠=1
𝑥𝑠 +

𝑡
∑

𝑠=1
𝜀𝑠

)

=
𝑇
∑

𝑡=1
𝜀𝑡

𝑇
∑

𝑠=𝑡
(𝜏𝑠 − 𝑥𝑠)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
=
∑𝑡−1

𝑠=1(𝑥𝑠−𝜏𝑠)

+
𝑇
∑

𝑡=1
(𝜏𝑡 − 𝑥𝑡)

(

𝑝0 + 𝛾𝑥𝑡 + 𝜃
𝑡

∑

𝑠=1
𝑥𝑠

)

.

nd because the dealer has CARA utility, this constant shift in the distribution of his terminal wealth does not affect his preferences over his
emaining choices (𝑥𝑡+1,… , 𝑥𝑇 ).16

One implication of Lemma 3 is that the (IC) constraint generally renders the first-best unachievable. Indeed, it follows from the analysis in
ection 3 that if the client could choose a contract and a recommended trading policy free of the (IC) constraint, then she would select 𝝉TWAP

nd 𝒙FB, both of which are the equally-weighted vectors
( 1
𝑇 ,… , 1

𝑇

)⊤
. These choices implement the efficient action, while also leaving the dealer

perfectly insured and with zero surplus. Unfortunately for the client, it is not generally true that 𝐹𝐴−1𝐸𝝉TWAP = 𝒙FB, so that by Lemma 3, these
choices are inconsistent with (IC). In particular, inequality obtains whenever 𝜃 > 0, and the departure from equality has a particular structure: it
s frontloaded in the sense of first-order stochastic dominance.

efinition. Given two 𝑇 -dimensional vectors 𝒂 and 𝒃, each of whose elements sum to 1, 𝒂 is frontloaded relative to 𝒃 if ∑𝑡
𝑠=1 𝑎𝑠 ≥

∑𝑡
𝑠=1 𝑏𝑠 for all 𝑡.

Proposition 4. 𝐹𝐴−1𝐸𝝉TWAP is frontloaded relative to 𝒙FB, with equality iff 𝜃 = 0.

Proposition 4 implies that permanent price impact creates a frontloading motive for the dealer, in the sense that if 𝜃 > 0, then the client cannot
obtain her first-best payoff. The intuition is as follows. Suppose the dealer is offered 𝝉TWAP . If he selects 𝒙FB, then his trading costs and his payment
from the client are both a simple average of prices, so that regardless of the realized prices, he is guaranteed a profit of zero. But he can do better
by frontloading his trading. Suppose the dealer deviates from 𝒙FB by shifting a small amount of volume from a period 𝑡′′ to a period 𝑡′ < 𝑡′′. The
direct effect of this deviation (i.e., holding prices fixed) is to reduce his expected costs at the rate E[𝑝𝑡′′ ]−E[𝑝𝑡′ ] = 𝜃

∑𝑡′′
𝑡=𝑡′+1 𝑥

FB
𝑡 +𝛾(𝑥FB𝑡′′ −𝑥FB𝑡′ ) = 𝜃 𝑡′′−𝑡′

𝑇 .
And the indirect effect (through price changes) is vanishing, because as we have noted, 𝒙FB insures the dealer against price fluctuations. Moreover,
the effect on the variance of his profit is second-order for small deviations. It follows that when 𝜃 > 0, some sufficiently small deviation from 𝒙FB
allows the dealer to make himself better off. In general, the dealer’s best response trades off this incentive to frontload against increased exposure
to price shocks and excess temporary-impact costs.

In the special case of 𝜃 = 0, this incentive to frontload does not arise, and the proposition implies that the first-best outcome is in fact achieved
via 𝝉TWAP , the (IC) constraint notwithstanding.17 Hence, our model predicts that 𝝉TWAP might yield reasonably good outcomes when applied to
settings or securities for which permanent price impact is relatively small. However, when permanent price impact is a major factor then 𝝉TWAP
ought not be expected to perform as well, which is what motivates the subsequent analysis.

4.2. The general solution

Having eliminated the (IR) constraint and characterized the (IC) constraint, the client’s problem reduces to

min
𝝉∈ wa

E[𝝉 ⋅ 𝒑] subject to 𝒙 = 𝐹𝐴−1𝐸𝝉 .

Our next result concerns the solution to this problem. It provides explicit formulas for the optimal weighted-average-price contract 𝝉∗ (henceforth,
simply the ‘‘optimal contract’’) and the incentive-compatible trading strategy 𝒙∗ = 𝐹𝐴−1𝐸𝝉∗ that the client recommends to the dealer. The formulas
are complicated, but they are fully explicit and easy to compute.

Proposition 5. The weights of the optimal contract and the dealer’s best-responding trading strategy are given by 𝝉∗ = 1
1⊤𝑀−11

𝑀−11 and 𝒙∗ =
1

1⊤𝑀−11
𝐹𝐴−1𝐸𝑀−11, where 1 = (1, 1,… , 1)⊤ denotes a 𝑇 -dimensional vector of ones and

𝑀 = 𝜃𝐴−1𝐸 + 𝜃𝐸⊤(𝐴−1)⊤ + 𝛾𝐹𝐴−1𝐸 + 𝛾𝐸⊤(𝐴−1)⊤𝐹⊤. (3)

The client’s expected costs of execution are 𝑝0 +
1

21⊤𝑀−11
.

16 Several model components therefore combine to imply optimality of a deterministic trading policy. For example, the dealer’s best response might not be
eterministic if he had non-constant absolute risk aversion, if he were facing a nonlinear contract, or if the random walk component of the price process were
nstead an AR(1).
17 This aspect of the result and the economic forces behind it are similar to why the guaranteed VWAP contract – under which the client pays the dealer at the
arket’s volume-weighted average price (VWAP) – is optimal in the setting of Baldauf et al. (2022). One subtlety is that in that paper, each trading period has

n associated ‘market condition,’ about which the dealer has superior information. The optimal contract weights prices by market volume so as to incentivize
he dealer to properly trade on his information about market conditions. In contrast, this paper uses a canonical market model in which such market conditions
8

o not feature (or do not differ across periods). Hence, the optimal contract need not weight by volumes, and a simple average of prices achieves the optimum.
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To establish this as the optimal contract, the proof shows that the client’s expected payment under a contract 𝝉 ∈  wa can be expressed as
1
2 𝝉

⊤𝑀𝝉. By symmetry of 𝑀 , the optimal contract weights satisfy 𝑀𝝉∗ = 𝜇1, where 𝜇 is the Lagrange multiplier on the constraint 𝝉⊤1 = 1. The
onstraint then implies 𝝉∗ = 1

1⊤𝑀−11
𝑀−11, as the proposition says. Applying Lemma 3, we obtain 𝒙∗ = 1

1⊤𝑀−11
𝐹𝐴−1𝐸𝑀−11.

The problem and its solution are mathematically complex, and so it is difficult to provide intuition for the precise form of the general solution
xhibited in Proposition 5. Nevertheless, the logic of the solution can be explained through three special cases: (i) when permanent price impact is

the only influence (i.e., 𝜃 → ∞), (ii) when temporary price impact is the only influence (i.e., 𝛾 → ∞), and (iii) when price risk is the only influence
(i.e., 𝜆 → ∞).18 We next consider each of these special cases in turn, then build upon them to explain the features and the comparative statics of
the general solution.

4.3. When permanent price impact is the only influence

For the case in which permanent price impact is the only influence, assume away temporary price impact, and make the dealer risk-neutral.

Corollary 6. Assume that there is no temporary price impact (𝛾 = 0) and that the dealer is risk-neutral (𝜆 = 0).

(i) For any 𝝉 ∈  wa, the dealer’s best response is 𝑥𝑡 =
1
𝑇 −

∑𝑇
𝑠=1

𝑠
𝑇 𝜏𝑠 +

∑𝑇
𝑠=𝑡 𝜏𝑠.

(ii) The weights of the optimal contract are 𝝉∗ =
( 1
2 , 0,… , 0, 12

)⊤
, so that the dealer’s best-responding trading strategy is 𝒙∗ =

( 𝑇+1
2𝑇 , 1

2𝑇 ,… , 1
2𝑇

)⊤
. The

client’s expected costs of execution are 𝑝0 +
𝜃(3𝑇+1)

4𝑇 .

Let us highlight two differences relative to the first-best solution given by Proposition 1. First, the client must now respect the (IC) constraint,
hich implies a particular relationship between the contract and the dealer’s trading strategy that in this case is given by Corollary 6(i). Second,

he client must now sacrifice some rent to the dealer. As a result, her expected costs increase from 𝑝0 +
𝜃(𝑇+1)
2𝑇 to 𝑝0 +

𝜃(3𝑇+1)
4𝑇 .

For the discussion below, let us assume that both contract weights 𝝉 and the dealer’s trading strategy 𝒙 are restricted to entail nonnegative
weights. This is only for simplicity of the exposition. Indeed, given Corollary 6(ii), this restriction does not bind, and in fact, many of the arguments
below could be formulated in reverse to rule out putative solutions entailing negative weights. With this in hand, we proceed by backward induction:

The dealer’s problem. Consider how the dealer would respond to an arbitrary contract 𝝉 ∈  wa. Beginning from any deterministic trading strategy
𝒙, consider a perturbation that shifts volume from 𝑥𝑡+1 to 𝑥𝑡. The dealer’s expected profit E[𝝉 ⋅ 𝒑 − 𝒙 ⋅ 𝒑] is affected in two ways:

• Direct effect (holding prices fixed). The direct effect is positive: E[𝑝𝑡+1] −E[𝑝𝑡] = 𝜃𝑥𝑡+1. Intuitively, prices tend to increase over time because of
permanent price impact of the dealer’s trades. Thus, if prices were held fixed, the dealer would reduce the cost of his on-market trading by
shifting volume to earlier periods.

• Indirect effect (through price changes). Of course, prices will not hold fixed. In particular, this shift affects E[𝑝𝑡], creating the following indirect
effect: (𝜏𝑡 − 𝑥𝑡)

(

𝜕E[𝑝𝑡]
𝜕𝑥𝑡

⏟⏟⏟
=𝜃

− 𝜕E[𝑝𝑡]
𝜕𝑥𝑡+1

⏟⏟⏟
=0

)

= (𝜏𝑡 − 𝑥𝑡)𝜃.19

Note that if 𝑥𝑡 = 𝜏𝑡, then the indirect effect is zero – intuitively, the dealer is perfectly insured with respect to 𝑝𝑡 if 𝑥𝑡 = 𝜏𝑡 – leaving the
positive direct effect to dominate. It follows that the optimal 𝑥𝑡 must exceed 𝜏𝑡. This argument applies for any 𝑡 < 𝑇 , implying that the dealer has
a frontloading motive in this case: his best response is to choose an 𝒙 that is frontloaded relative to the offered 𝝉.20

Summing both effects, the total derivative is 𝜃[𝑥𝑡+1 + 𝜏𝑡 − 𝑥𝑡]. Thus, if 𝒙 best responds to 𝝉, we must have 𝑥𝑡+1 = 𝑥𝑡 − 𝜏𝑡 for all 𝑡 < 𝑇 . Having
assumed that all entries of 𝝉 are nonnegative, we conclude from these first-order conditions that (𝑥𝑡)𝑇𝑡=1 is a weakly decreasing sequence. These
conditions moreover imply

𝑥𝑡 =
1
𝑇

−
𝑇
∑

𝑠=1

𝑠
𝑇
𝜏𝑠 +

𝑇
∑

𝑠=𝑡
𝜏𝑠, (4)

as claimed by Corollary 6(i).

he client’s problem. For intuition into why 𝝉∗ =
( 1
2 , 0,… , 0, 12

)⊤
is optimal in this case of a risk-neutral dealer and no temporary price impact, we

first explain why the optimal contract puts weight only on the extremal prices. Starting from an arbitrary 𝝉, consider a perturbation that implements
a mean-preserving spread of the contract weights. Both the direct and indirect effects of this perturbation benefit the client:

• Direct effect (holding prices fixed). As mentioned while analyzing the dealer’s problem, (𝑥𝑡)𝑇𝑡=1 is a weakly decreasing sequence. As a positive
affine transformation of the partial sums of (𝑥𝑡)𝑇𝑡=1, (E[𝑝𝑡])

𝑇
𝑡=1 is therefore a weakly concave sequence. Thus, if the prices were held fixed, the

client’s payment would be weakly lower under a mean-preserving spread of 𝝉.

18 Case (i) is equivalent to what obtains if 𝜃 > 0 and 𝛾 = 𝜆 = 0. Likewise, case (ii) is equivalent to what obtains if 𝛾 > 0 and 𝜃 = 𝜆 = 0. Because the exposition
s simpler if limits are avoided, this is what Sections 4.3 and 4.4 consider. On the other hand, Section 4.5 does treat the limiting case of 𝜆 → ∞. Although 𝜆 > 0
nd 𝜃 = 𝛾 = 0 leads to the same dealer’s best response, it does not lead to a unique optimal contract, as without price impact, all contracts lead to identical
utcomes for the dealer. Mathematically, if 𝜃 = 𝛾 = 0, the matrix 𝑀 in (3) is the zero matrix so that the inverse (needed in the formula for 𝝉∗ in Proposition 5)
s not well defined. Thus, Section 4.5 maintains the assumption that at least one of 𝜃 and 𝛾 is strictly positive, instead considering the limit as 𝜆 → ∞.
19 There are no other indirect effects: (i) this shift does not affect the earlier prices 𝑝1,… , 𝑝𝑡−1; and (ii) because price impact is purely permanent, it also does
ot affect the later prices 𝑝𝑡+1,… , 𝑝𝑇 .
20 This is for any 𝝉 and is therefore a stronger conclusion than that of Proposition 4, which applies only if the offered contract is 𝝉TWAP . On the other hand,
9

roposition 4 holds for general parameters, whereas this section specializes to the case of 𝛾 = 𝜆 = 0.
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• Indirect effect (through price changes). Of course, prices will not hold fixed, as a change in 𝝉 changes the dealer’s best response 𝒙, affecting
price dynamics. Using (4), we compute

𝑡
∑

𝑠=1
𝑥𝑠 =

𝑡
𝑇

+
𝑡

∑

𝑠=1
𝑠
(

1 − 𝑡
𝑇

)

𝜏𝑠 +
𝑇
∑

𝑠=𝑡+1
𝑡
(

1 − 𝑠
𝑇

)

𝜏𝑠. (5)

Observe that for all 𝑡, the coefficients on (𝜏1,… , 𝜏𝑇 )⊤ in this expression form a weakly concave sequence.21 Thus, a mean-preserving spread
of 𝝉 leads the dealer to backload his trading, in the sense of first-order stochastic dominance (i.e., reduce ∑𝑡

𝑠=1 𝑥𝑠 for all 𝑡). Given that
E[𝑝𝑡] = 𝑝0 + 𝜃

∑𝑡
𝑠=1 𝑥𝑠, such backloading weakly reduces each price, which benefits the client.

he client therefore unambiguously benefits from mean-preserving spreads of the contract weights. It follows that 𝜏∗2 = ⋯ = 𝜏∗𝑇−1 = 0, so that the
ptimal contract is a U-shape.22 To see that it is also symmetric, begin from an arbitrary contract whose interior weights are all zero and consider a
erturbation that shifts weight from period 𝑇 to period 1. Unlike the mean-preserving perturbation considered above, here the direct and indirect
ffects have opposite signs:

• Direct effect (holding prices fixed). On the one hand, owing to permanent price impact, prices are expected to rise over the trading interval.
Thus, if the dealer’s trading strategy – and hence price dynamics – were fixed, the client would put full weight on the first period.

• Indirect effect (through price changes). On the other hand, price dynamics will respond to the contract. All else equal, the client prefers low
prices. Owing to permanent price impact, each price is lowest when the dealer backloads his trading as much as possible. Given the contract’s
influence on the dealer’s trading strategy (i.e., that his trading will be frontloaded relative to the contract), prices are lowest when the client
puts full weight on the last period.

he optimal contract must balance these two considerations. Due to the linearity of price impact, these two effects offset when 𝜏1 = 𝜏𝑇 = 1
2 .23

4.4. When temporary price impact is the only influence

For the case in which temporary price impact is the only influence, assume away permanent price impact, and make the dealer risk-neutral. In
this case, the client optimally offers the guaranteed TWAP contract, which weights each period equally. It induces the dealer to use the first-best
trading strategy, which similarly puts equal weight on each period. And in this case, the client obtains her first-best payoff.

Corollary 7. Assume that there is no permanent price impact (𝜃 = 0) and that the dealer is risk-neutral (𝜆 = 0).

(i) For any 𝝉 ∈  wa, the dealer’s best response is 𝒙 = 1
2 𝝉 + 1

2

( 1
𝑇 ,… , 1

𝑇

)⊤
.

(ii) The weights of the optimal contract are 𝝉∗ =
( 1
𝑇 ,… , 1

𝑇

)⊤
, so that the dealer’s best-responding trading strategy is 𝒙∗ =

( 1
𝑇 ,… , 1

𝑇

)⊤
. The client’s

expected costs of execution are 𝑝0 +
𝛾
𝑇 .

Claim (i) says that the dealer has a smoothing motive in this case: his best response is to choose an 𝒙 that partially smooths the offered 𝝉. To
understand this, suppose that the dealer did not smooth at all, selecting the trading strategy 𝒙 = 𝝉. His trading costs and his payment from the
client would both therefore be the same weighted average of the prices, so that he would be guaranteed a profit of zero. But he can do better by
smoothing his trading. Suppose the dealer deviates from 𝒙 = 𝝉 by shifting volume from a period 𝑡′′ to a period 𝑡′ where 𝜏𝑡′ < 𝜏𝑡′′ . The direct effect
of this deviation is to reduce his expected costs at the rate E[𝑝𝑡′′ ] − E[𝑝𝑡′ ] = 𝛾(𝑥𝑡′′ − 𝑥𝑡′ ) = 𝛾(𝜏𝑡′′ − 𝜏𝑡′ ) > 0. And the indirect effect (through prices)
s vanishing, because as we have noted, 𝒙 = 𝝉 insures the dealer against price fluctuations. That a risk-neutral dealer optimally smooths precisely
ne half of the variation in 𝝉 is due to the linearity of price impact.

In particular, if offered the guaranteed TWAP contract 𝝉TWAP =
( 1
𝑇 ,… , 1

𝑇

)⊤
, the dealer selects 𝒙 =

( 1
𝑇 ,… , 1

𝑇

)⊤
, which is in fact the efficient

action (i.e., 𝒙FB). This outcome also leaves the dealer with zero surplus. It follows that 𝝉TWAP gives the client her first-best payoff. Clearly, nothing
can do better than that, and this contract must be optimal.

21 More precisely, the coefficients on (𝜏1,… , 𝜏𝑇 )⊤ constitute an inverted-𝑉 , which is maximized at the coefficient on 𝜏𝑡. The intuition is that ∑𝑡
𝑠=1 𝑥𝑠 is increasing

in each of (𝑥1,… , 𝑥𝑡), and given the dealer’s frontloading motive, an increase in 𝜏𝑡 leads each of (𝑥1,… , 𝑥𝑡) to increase. Let us contrast that with 𝜏𝑡−1 and 𝜏𝑡+1. An
increase in 𝜏𝑡−1 leads (𝑥1,… , 𝑥𝑡−1) to increase but does not lead 𝑥𝑡 to increase. An increase in 𝜏𝑡+1 also leads (𝑥1,… , 𝑥𝑡) to increase, but the effect is more muted
because 𝜏𝑡+1 also works to increase 𝑥𝑡+1.

22 That the optimal contract puts relatively less weight on prices of interior periods is also intuitive because these prices are the easiest for the dealer to
manipulate, in the following sense. Fixing any deterministic trading strategy �̄� as a baseline, imagine that in choosing his trading strategy 𝒙, the dealer is
constrained not only by ∑𝑇

𝑠=1 𝑥𝑠 = 1 but also by 𝑥𝑡 ∈ [�̄�𝑡 − 𝛿, �̄�𝑡 + 𝛿] for all 𝑡. This means that ∑𝑡
𝑠=1 �̄�𝑠 − 𝛿min{𝑡, 𝑇 − 𝑡} ≤

∑𝑡
𝑠=1 𝑥𝑠 ≤

∑𝑡
𝑠=1 �̄�𝑠 + 𝛿min{𝑡, 𝑇 − 𝑡}, so that

the dealer can manipulate 𝑝𝑡 by 𝜃𝛿min{𝑡, 𝑇 − 𝑡} in either direction.
23 Indeed, we have E[𝑝𝑡] = 𝑝0 + 𝜃

∑𝑡
𝑠=1 𝑥𝑠 = 𝑝0 + 𝜃

[

𝑡
𝑇
+
(

1 − 𝑡
𝑇

)

𝜏1
]

, using Eq. (5) and 𝜏2 = ⋯ = 𝜏𝑇−1 = 0. Thus, the direct effect of perturbing 𝝉 = (𝜏1, 0,… , 0, 𝜏𝑇 )⊤

o as to shift weight from period 𝑇 to period 1 is

E[𝑝1] − E[𝑝𝑇 ] = 𝜃
[ 1
𝑇

+
(

1 − 1
𝑇

)

𝜏1 − 1
]

= −𝜃
(

1 − 1
𝑇

)

(1 − 𝜏1).

And the indirect effect is

𝜏1

(

𝑑E[𝑝1]
𝑑𝜏1

−
𝑑E[𝑝1]
𝑑𝜏𝑇

⏟⏟⏟
=0

)

+ 𝜏𝑇

(

𝑑E[𝑝𝑇 ]
𝑑𝜏1

⏟⏟⏟
=0

−
𝑑E[𝑝1]
𝑑𝜏𝑇

⏟⏟⏟
=0

)

= 𝜏1𝜃
(

1 − 1
𝑇

)

.

10
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4.5. When price risk is the only influence

For the case in which price risk is the only influence, fix 𝜃 and 𝛾, and consider the limit as 𝜆 → ∞. According to claim (ii) of the following
result, the outcome resembles the case in which temporary price impact is the only influence: the guaranteed TWAP contract is optimal, it induces
the dealer to use the first-best trading strategy, and the client obtains her first-best payoff. But it is for a different reason, as according to claim (i),
there is a difference in the dealer’s best response function.

Corollary 8. Consider the limit as the dealer becomes infinitely risk averse (𝜆 → ∞).

(i) For any 𝝉 ∈  wa, the dealer’s best response converges to 𝒙 = 𝝉.
(ii) The weights of the optimal contract converge to 𝝉∗ =

( 1
𝑇 ,… , 1

𝑇

)⊤
, so that the dealer’s best-responding trading strategy converges to 𝒙∗ =

( 1
𝑇 ,… , 1

𝑇

)⊤
.

The client’s expected costs of execution converge to 𝑝0 +
𝛾
𝑇 + 𝜃(𝑇+1)

2𝑇 .

Claim (i) says that the dealer has a mirroring motive in this case: his best response is to choose an 𝒙 equal to the offered 𝝉. The intuition is the
following. As the dealer becomes more risk averse, he places greater emphasis on insuring himself against price shocks. In fact, he can perfectly
insure himself by selecting a deterministic trading strategy with weights that mirror the contract he is offered. In the limit of infinite risk aversion,
this is exactly what he does. In particular, 𝝉TWAP =

( 1
𝑇 ,… , 1

𝑇

)⊤
induces the dealer to select the efficient action 𝒙FB =

( 1
𝑇 ,… , 1

𝑇

)⊤
. This outcome

moreover leaves the dealer perfectly insured and with zero surplus. It follows that 𝝉TWAP gives the client her first-best payoff, and must therefore
be optimal.

This result reflects an interesting contrast relative to classical models of moral hazard (e.g., Holmström, 1979). Those classical models feature
an insurance-incentives tradeoff: the agent can be induced to take the efficient action (i.e., high effort) only if he is exposed to risk. And if the agent
is very risk averse, then he must be paid a significant risk premium for that. The principal’s payoff then typically declines as the agent becomes
more risk averse. In contrast, given the special structure of our setting, inducing the efficient action (i.e., 𝒙FB) does not always require exposing
the dealer to risk. In fact, in this limit of an infinitely risk averse dealer, 𝝉 =

( 1
𝑇 ,… , 1

𝑇

)⊤
induces the dealer to select 𝒙FB without exposing him to

any risk at all. In consequence, the client’s payoff is not monotonically decreasing in 𝜆.

4.6. Discussion of the general solution

The general model can be viewed as a combination of the three aforementioned special cases. Accordingly, the general formula for the dealer’s
best response reflects a mixture of the frontloading, smoothing, and mirroring motives respectively discussed in the previous sections. Likewise,
the general formula for the optimal contract combines the features of the optimal contracts from those special cases. One notable feature shared
by all three special cases is that the optimal contract is symmetric, in the sense that 𝜏∗𝑗 = 𝜏∗𝑇+1−𝑗 for all 𝑗. In fact, such symmetry holds in general.

orollary 9. The optimal contract weights are symmetric: 𝜏∗𝑗 = 𝜏∗𝑇+1−𝑗 for all 𝑗 = 1,… , 𝑇 .

The intuition for why symmetry obtains in general can be thought of as a combination of the various reasons for why it obtains in each of the
hree special cases discussed before.

To illustrate the general solution provided by Proposition 5, Figs. 1–3 display 𝝉∗ and 𝒙∗ for various choices of the parameters 𝜃, 𝛾, and 𝜆.24 The
eft panels of these figures depict the optimal contract weights; consistent with Corollary 9, they are indeed symmetric. The right panels depict the
ealer’s best-responding trading strategy.

Figs. 1–3 suggest that the general solution exhibits several additional qualitative patterns. First, the optimal contract weights are U-shaped:
∗
1 ≥ 𝜏∗2 ≥ ⋯ ≥ 𝜏∗

⌈𝑇 ∕2⌉ ≤ ⋯ 𝜏∗𝑇−1 ≤ 𝜏∗𝑇 .25 Second, the dealer responds with a trading strategy that is frontloaded relative to the contract:
𝑡
𝑠=1 𝑥

∗
𝑡 ≥

∑𝑡
𝑠=1 𝜏

∗
𝑠 for all 𝑡 = 1,… , 𝑇 . Third, the severity of both this U-shape and this frontloading is strengthened by 𝜃 (the coefficient of

ermanent price impact), weakened by 𝛾 (the coefficient of temporary price impact), and weakened by 𝜆 (the dealer’s coefficient of absolute risk
version).

These patterns can be understood through the aforementioned special cases. With permanent price impact as the only influence, we have
∗ =

( 1
2 , 0,… , 0, 12

)⊤
, which is the maximally-severe U-shape, and 𝒙∗ =

( 𝑇+1
2𝑇 , 1

2𝑇 ,… , 1
2𝑇

)⊤
, which is strictly frontloaded (relative to the contract).

With either temporary price impact or price risk as the only influence, we have 𝝉∗ =
( 1
𝑇 ,… , 1

𝑇

)⊤
, which is the minimally-severe U-shape, and

∗ =
( 1
𝑇 ,… , 1

𝑇

)⊤
, which represents minimally-severe frontloading. The intuition for why the U-shape in 𝝉∗ and frontloading in 𝒙∗ (weakly) obtain

n general can be thought of as a combination of the different reasons for why they obtain in each of the three special cases discussed before.
he comparative statics can also be understood in these terms. An increase in 𝜃 moves us toward the limiting case of Section 4.3, so it increases

both the severity of the U-shape and the severity of the frontloading. Increases in 𝛾 and 𝜆 reduce those severities because they move us toward the
limiting cases of Sections 4.4 and 4.5, respectively.

24 Note that 𝜆 and 𝜎 affect the solution only through the quantity 𝜆𝜎2. Hence, Fig. 3, which depicts how the solution changes with 𝜆, speaks also to how the
solution changes with 𝜎.

25 In fact, a stronger property appears to hold. The figures suggest that the optimal contract weights are convex in the sense that 𝜏∗1 − 𝜏∗2 ≥ 𝜏∗2 − 𝜏∗3 ≥ ⋯ ≥ 𝜏∗𝑇−2 −
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
11

𝑇−1 ≥ 𝜏𝑇−1−𝜏𝑇 . Given that the weights are symmetric (cf. Corollary 9), this convexity condition implies the U-shape condition 𝜏1 ≥ 𝜏2 ≥ ⋯ ≥ 𝜏
⌈𝑇 ∕2⌉ ≤ ⋯ 𝜏𝑇−1 ≤ 𝜏𝑇 .



Journal of Financial Economics 160 (2024) 103901M. Baldauf, C. Frei and J. Mollner

w
o

a

Fig. 1. The optimal contract weights and best-responding trading strategy for different levels of permanent price impact. Without permanent price impact (𝜃 = 0), both the optimal
weights and the trading strategy are constant over time. As permanent price impact grows, the optimal weights become more U-shaped, and the dealer’s trading strategy becomes
more frontloaded. The other parameters are 𝛾 = 1, 𝜆 = 1, 𝜎 = 0.5, and 𝑇 = 20.

Fig. 2. The optimal contract weights and best-responding trading strategy for different levels of temporary price impact. Without temporary price impact (𝛾 = 0), the optimal
eights are the same for all periods except for the first and last periods, and the dealer’s trading strategy is frontloaded. As temporary price impact grows, the curves for the
ptimal weights become smoother, and the dealer’s trading strategy becomes less frontloaded. The other parameters are 𝜃 = 1, 𝜆 = 1, 𝜎 = 0.5, and 𝑇 = 20.

Fig. 3. The optimal contract weights and best-responding trading strategy for different levels of risk aversion. As risk aversion grows, the optimal weights become less U-shaped,
nd the dealer’s trading strategy becomes less frontloaded. The other parameters are 𝜃 = 1, 𝛾 = 1, 𝜎 = 0.5, and 𝑇 = 20.
12
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We stress that these observations about the U-shape of the optimal contract and the frontloading of the dealer’s trading come only from
numerical experimentation and do not correspond to any formal result that we have been able to derive from our closed-form solution to the
general discrete-time model. We do, however, prove analogues of these observations for the continuous-time limit analyzed in the next section.

5. Continuous-time limit

In light of ambiguity regarding what precisely a trading period represents, as well as recent trends toward progressively high-frequency trading,
we are motivated to study the continuous-time limit of our discrete-time model. For this limit, we consider a sequence of models, indexed by 𝑘.
Along this sequence, we let the number of periods diverge (i.e., 𝑇𝑘 → ∞). At the same time, the distance between consecutive periods should
vanish, so as to hold the execution horizon constant. To capture this, we shrink the variance of price shocks to zero (i.e., 𝜎2𝑘 → 0) in such a way
that 𝑇𝑘𝜎2𝑘 remains equal to a constant, which we denote 𝑇𝜎2.26

5.1. The optimal contract

To illuminate the underlying patterns, we state the following result in terms of cumulative values through quantiles 𝑞 of the execution period:
∑

⌈𝑞𝑇 ⌉
𝑡=1 𝜏∗𝑡 and ∑

⌈𝑞𝑇 ⌉
𝑡=1 𝑥∗𝑡 . To ensure that the convergence is well behaved, we focus on the case of a strictly risk-averse dealer.

Proposition 10. Consider a sequence of execution horizons (𝑇𝑘)∞𝑘=1 and a sequence of price-shock variances (𝜎
2
𝑘)

∞
𝑘=1 such that lim𝑘→∞ 𝑇𝑘 = ∞ and

𝑘𝜎2𝑘 = 𝑇𝜎2 for all 𝑘. For each 𝑘, let 𝝉∗𝑘 be the associated optimal contract, and let 𝒙∗𝑘 be the dealer strategy that best responds to 𝝉∗𝑘. Assume also that
he dealer is strictly risk-averse (𝜆 > 0). For all 𝑞 ∈ [0, 1],

lim
𝑘→∞

⌈𝑞𝑇𝑘⌉
∑

𝑡=1
𝜏∗𝑘𝑡 =

⎧

⎪

⎨

⎪

⎩

0 if 𝑞 = 0
1−𝑎
2 + 𝑎𝑞 if 𝑞 ∈ (0, 1)

1 if 𝑞 = 1

and lim
𝑘→∞

⌈𝑞𝑇𝑘⌉
∑

𝑡=1
𝑥∗𝑘𝑡 =

⎧

⎪

⎨

⎪

⎩

0 if 𝑞 = 0
3(1−𝑎)

4 + 𝑎𝑞 if 𝑞 ∈ (0, 1)
1 if 𝑞 = 1

where 𝑎 = 1
1+ 4𝜃

𝜆𝑇𝜎2
. The client’s expected costs of execution converge to 𝑝0 +

3−𝑎
4 𝜃.

The optimal contract in the continuous-time limit takes a surprisingly simple form, which can in fact be viewed as an extreme U-shape: interior
imes are weighted with a constant density of 𝑎, and the two boundary instants are weighted with atoms of 1−𝑎

2 each.27 For the dealer’s best
response, interior times are also weighted with a constant density of 𝑎, but there is frontloading in terms of the boundary weights: the initial atom
is three times the terminal atom.

Comparative statics. This density 𝑎 is increasing in (𝜆, 𝑇 𝜎2) and decreasing in 𝜃. As 𝑎 relates inversely to the severity of the optimal contract’s
U-shape, these relationships accord with what the earlier numerical experimentation suggests holds in general. To explain the intuition, note
that permanent price impact generates an expected gap between the initial and terminal prices, creating a frontloading motive for the dealer:
by frontloading, the dealer expects to buy low and sell high. A larger 𝜃 implies a larger expected gap, hence a larger frontloading motive. On
the other hand, frontloading exposes the dealer to price risk owing to variance in this gap. Larger 𝑇𝜎2 implies a larger variance, hence a smaller
frontloading motive. Larger 𝜆 means less risk-bearing capacity, hence a similarly smaller frontloading motive. Finally, to see the connection between
the frontloading motive and 𝑎, consider what would happen if the frontloading motive were to disappear entirely so that the dealer’s trades perfectly
mirrored the weights of the offered contract. In that case, the client obtains her first-best payoff from a guaranteed TWAP contract (i.e., with 𝑎 = 1).
Analogously, smaller (larger) frontloading motives imply larger (smaller) values of 𝑎.

Temporary price impact. If trading were everywhere sufficiently diffuse, then temporary price impact would vanish in the limit. Indeed, temporary
price impact costs are 𝛾

∑𝑇𝑘
𝑡=1(𝑥

𝑘
𝑡 )

2, which, for example, vanish under the first-best trading policy, 𝒙FB,k =
( 1
𝑇𝑘
,… , 1

𝑇𝑘

)⊤
. More generally, a sufficient

condition for vanishing temporary price impact is that max1≤𝑡≤𝑇𝑘 |𝑥
𝑘
𝑡 | is 𝑜

(

1∕
√

𝑇𝑘
)

.
However, under the best response to the optimal contract, trading is not everywhere diffuse in this sense (unless 𝜃 = 0), and temporary price

impact does not vanish. So it is for subtle reasons that 𝛾 does not affect the limit characterized by Proposition 10. This invariance obtains because
temporary price impact creates two effects. On the one hand, if the dealer’s trading schedule were held fixed, then an increase in 𝛾 would raise
prices and hence the client’s payment. But on the other hand, an increase in 𝛾 creates a smoothing motive for the dealer, which reduces the extent
of the dealer’s frontloading and hence the client’s payment. In the continuous-time limit, these two considerations offset under the optimal contract.

Convergence. Although temporary price impact has no effect on the continuous-time limit, it does affect convergence to this limit. Without
temporary price impact, the first and last contract weights converge to the atoms of the continuous-time limits so that

lim
𝑘→∞

𝜏∗𝑘1 = lim
𝑘→∞

𝜏∗𝑘𝑇𝑘 = 1 − 𝑎
2

and lim
𝑘→∞

𝜏∗𝑘𝑗+1 = lim
𝑘→∞

𝜏∗𝑘𝑇𝑘−𝑗 = 0 for any fixed 𝑗 ≥ 1.

n contrast, with temporary price impact, we have a sequence of discrete weights

lim
𝑘→∞

𝜏∗𝑘𝑗+1 = lim
𝑘→∞

𝜏∗𝑘𝑇𝑘−𝑗 =
𝜃𝛾𝑗

(𝜃 + 𝛾)𝑗+1
1 − 𝑎
2

for any fixed 𝑗 ≥ 0.

26 This type of limit is classical in the study of continuous-time limits of discrete-time models, going back to Cox et al. (1979).
27 Studying an optimal execution problem, Obizhaeva and Wang (2013) derive a very similar form for the optimal trading strategy: interior times weighted
ith a constant density and boundary instants weighted with equal atoms. But the similarity is only coincidental. They solve a different problem (a problem of
ptimal execution rather than one of optimal contracting) under a different set of assumptions.
13
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Fig. 4. The optimal contract for a large 𝑘 (such that 𝑇𝑘 = 2,000). There are two sequences of discrete weights at the beginning and end, while the weights are smooth for interior
imes. Parameters are 𝜃 = 1, 𝛾 = 1, 𝜆 = 1, and 𝑇𝜎2 = 1. The limit features a constant density at interior times of 𝑎 = 1∕

(

1 + 4𝜃
𝜆𝑇𝜎2

)

= 0.2, as well as initial and terminal atoms of
1−𝑎
2

= 0.4 each.

ote that the sum of each of the two sequences equals
∞
∑

𝑗=0

𝜃𝛾𝑗

(𝜃 + 𝛾)𝑗+1
1 − 𝑎
2

= 𝜃
𝜃 + 𝛾

1
1 − 𝛾

𝜃+𝛾

1 − 𝑎
2

= 1 − 𝑎
2

,

which coincides with what Proposition 10 specifies for the jumps of lim𝑘→∞
∑

⌈𝑞𝑇𝑘⌉
𝑡=1 𝜏∗𝑘𝑡 at 𝑞 = 0 and 𝑞 = 1. Fig. 4 illustrates this convergence.28

Interestingly, the optimal trading strategy has a different form: a sequence of discrete weights only at the beginning, but not at the end of the
trading times. Without temporary price impact, only the first element of the trading strategy converges to a nonzero value

lim
𝑘→∞

𝑥∗𝑘1 = 1 − 𝑎
2

, lim
𝑘→∞

𝑥∗𝑘𝑗+2 = 0, lim
𝑘→∞

𝑥∗𝑘𝑇𝑘−𝑗 = 0 for any fixed 𝑗 ≥ 0.

With temporary price impact, we have

lim
𝑘→∞

𝑥∗𝑘𝑗+1 =
𝜃𝛾𝑗

(𝜃 + 𝛾)𝑗+1
1 − 𝑎
2

, lim
𝑘→∞

𝑥∗𝑘𝑇𝑘−𝑗 = 0 for any fixed 𝑗 ≥ 0. (6)

However, the jumps of lim𝑘→∞
∑

⌈𝑞𝑇𝑘⌉
𝑡=1 𝑥∗𝑘𝑡 at 𝑞 = 0 and 𝑞 = 1 are not determined only by these sequences of discrete weights. As stated in

Proposition 10, the jump at 𝑞 = 0 is 3(1−𝑎)
4 , consisting of not only ∑∞

𝑗=0
𝜃𝛾𝑗

(𝜃+𝛾)𝑗+1
1−𝑎
2 = 1−𝑎

2 from (6), but also another infinite sum whose terms
individually converge to zero but whose sum converges to 1−𝑎

4 . This is illustrated in Fig. 5, where we see both the sequence of discrete weights at
zero and a piece of the curve near zero that converges to a vertical line as 𝑘 → ∞. Likewise, the jump at 𝑞 = 1 is 1−𝑎

4 , which comes entirely from
an infinite sum of terms that individually all converge to zero.

Supplemental material. See Online Appendix D for supplemental details on this continuous-time limit, including an overview of our strategy for
proving Proposition 10 and a discussion of the wedge between the first-best and second-best.

5.2. Discussion of outcomes under common contracts

Although not optimal in our model, two contracts that are nevertheless commonly used are 𝝉TWAP and 𝝉MOC . Natural questions include: What
trading behavior is induced by these contracts? By how much do they underperform the optimal contract? Under what situations, if any, do they
deliver outcomes close to the client’s second-best payoff? The following result provides answers.

Proposition 11. Consider a sequence of execution horizons (𝑇𝑘)∞𝑘=1 and a sequence of price-shock variances (𝜎
2
𝑘)

∞
𝑘=1 such that lim𝑘→∞ 𝑇𝑘 = ∞ and

𝑘𝜎2𝑘 = 𝑇𝜎2 for all 𝑘. Assume also that the dealer is strictly risk-averse (𝜆 > 0).

(i) For each 𝑘, let 𝒙TWAP,𝑘 be the dealer strategy that best responds to 𝝉TWAP,𝑘. For all 𝑞 ∈ [0, 1],

lim
𝑘→∞

⌈𝑞𝑇𝑘⌉
∑

𝑡=1
𝑥TWAP,𝑘𝑡 =

⎧

⎪

⎨

⎪

⎩

0 if 𝑞 = 0
𝜃

𝜆𝑇𝜎2
+ 𝑞 if 𝑞 ∈ (0, 1)

1 if 𝑞 = 1

(7)

28 Although 𝜆 affects 𝑎, and hence the total amount of weight in these sequences, it does not affect how this total is divided across the elements of the sequences
in the limit). This is intuitive because when the time periods become shorter, price fluctuations between consecutive periods become smaller, so that for purposes
f these periods around the boundary times, the dealer behaves in the limit as if he were risk-neutral (regardless of 𝜆). The role of 𝛾 is exactly the opposite: it

affects the division of weight across the sequences, but not the weight assigned to the sequences in total.
14
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Fig. 5. The dealer’s best-responding trading strategy for a large 𝑘 (such that 𝑇𝑘 = 2,000). There is a sequence of discrete weights at the beginning, while the weights are smooth
or interior times and toward the end (although part of the smooth curve converges to a vertical line). Parameters are 𝛾 = 1, 𝜃 = 1, 𝜆 = 1, and 𝑇𝜎2 = 1. The limit features a
onstant density at interior times of 𝑎 = 1∕

(

1 + 4𝜃
𝜆𝑇𝜎2

)

= 0.2, an initial atom of 3(1−𝑎)
4

= 0.6, and a terminal atom of 1−𝑎
4

= 0.2.

The client’s expected costs of execution converge to 𝑝0 +
1
2 𝜃 +

𝜃2

𝜆𝑇𝜎2
.

(ii) For each 𝑘, let 𝒙MOC ,𝑘 be the dealer strategy that best responds to 𝝉MOC ,𝑘. For all 𝑞 ∈ [0, 1],

lim
𝑘→∞

⌈𝑞𝑇𝑘⌉
∑

𝑡=1
𝑥MOC ,𝑘𝑡 =

{

0 if 𝑞 ∈ [0, 1)
1 if 𝑞 = 1

(8)

The client’s expected costs of execution converge to 𝑝0 + 𝜃 + 𝛾2

𝜃+2𝛾 .

According to part (i) of the proposition, 𝝉TWAP leads the dealer to frontload his trading so much that he actually overbuys, before selling a
iscrete amount at the terminal instant. The client can deter this overbuying – and consequently do better – by collecting contract weights from
nterior times near the end of the window into an atom on the terminal instant. Hence, its terminal atom is one way by which the optimal contract
mproves upon 𝝉TWAP . According to part (ii) of the proposition, 𝝉MOC leads the dealer to concentrate all his trading at the terminal instant, behavior
ometimes termed ‘banging the close.’ Such extraordinarily concentrated trading is inefficient, and one way by which the optimal contract improves
pon 𝝉MOC is to deter it.

ack-of-the-envelope calculation. To quantify our findings, we consider a reasonable parametrization for our model’s continuous-time limit. Consider
client who desires to trade a position, currently valued at 𝑉 = $100 million, in a certain stock. Let the parameters be 𝑝0 = $100, 𝜃 = 2 × 10−6,

𝛾 = 0, 𝜆 = 2 × 10−6, 𝑇 = 1, and 𝜎2 = 6.1.29 Under these parameters, the optimal contract puts 19.8 percent of its weight on the opening price, 19.8
percent on the closing price, and 60.4 percent on the intraday time-weighted average price.

We then use our results to compute model-implied transaction costs under various scenarios. Our metric is implementation shortfall: the client’s
expected costs net of what it would have cost to trade her entire volume at 𝑝0 per share. Whereas our theoretical analysis normalized trade size to
one share, we are now contemplating a trade of 𝑉 ∕𝑝0 = 1 million shares. In our model, transaction costs grow with the square of volume, so we
therefore scale up by a factor of one trillion. Doing so, we find the following. First-best transaction costs are 1012

(

1
2 𝜃

)

= $1 million, or 100 bps of
the value of the trade, which is the correct order of magnitude for trades of block sizes (e.g., US Securities and Exchange Commission, 2005; Abel
Noser, 2021; The Wall Street Journal, 2022a,b). Second-best transaction costs are 1012

( 1
2 𝜃 + 𝜃2

4𝜃+𝜆𝑇𝜎2
)

= $1.2 million (or 120 bps). Under 𝝉TWAP ,
transaction costs are 1012

( 1
2 𝜃 +

𝜃2

𝜆𝑇𝜎2
)

= $1.33 million (or 133 bps). Under 𝝉MOC , they are 1012
(

𝜃 + 𝛾2

𝜃+2𝛾

)

= $2 million (or 200 bps).
The calculations reported in the previous paragraph indicate that switching to the optimal contract from 𝝉TWAP would reduce transaction costs

by 13 bps. Gains of a switch from 𝝉MOC would be even larger, 80 bps. In either case, such a switch closes a sizable portion of the gap relative to the
first-best and represents a cost saving on the order of hundred(s) of thousands of dollars per trade. Scaling up by the market-wide volume of such
trades, these cost savings could extrapolate to billions of dollars per year.30 Of course, additional savings might be possible with more complex
ontracts (e.g., the set of affine contracts as in Online Appendix A, or the fully general set as in Section 3.2). Nevertheless, it is striking that such
ubstantial cost savings can be obtained, even while staying within the relatively simple class of weighted-average-price contracts.

29 These parameter values are consistent with the following facts. Abel Noser (2021) describes a dataset of portfolio transitions, with a median size of $145
illion. The median S&P 500 stock price was $112 as of April 27, 2022. Cartea and Jaimungal (2016, Tables 7 and 8) estimate the coefficient of permanent price

mpact for 17 stocks, with results ranging from 0.63 × 10−6 to 2.03 × 10−4. Choosing 𝛾 = 0 is to be maximally conservative, biasing our analysis in favor of finding
a small difference between the performance of 𝝉MOC and our optimal contract. Campo, Guerre, Perrigne, and Vuong (2011, Table 2) estimate a coefficient of
absolute risk aversion of 2 × 10−6. 𝑇 = 1 reflects an execution window of one day. Avramov, Chordia, and Goyal (2006, Table 1) find that the standard deviation
of daily returns is 2.47%, which for a $100 stock equates to a variance of 6.10.

30 A conservative estimate of institutional transaction costs is $70 billion per year (Nasdaq, 2022; SIFMA, 2021). Assuming that this figure represents 133 bps
(200 bps) of the traded value and that a switch to our optimal contract would save 13 bps (80 bps) of that value implies total cost savings of $6.8 billion ($28
15

billion) per year.
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6. Conclusion

This paper formulates a contracting problem in which a client (the principal) contracts to purchase a position from a dealer (the agent) at some
future time. In the interim, the dealer acquires the position from the market. The friction is hidden action, in that the client cannot observe the
dealer’s on-market trades, but only the evolution of market prices, so that the dealer has an incentive to frontload his trading. Eliminating this
friction and solving for the first-best benchmark, the problem becomes one of optimal execution. Indeed, our analysis of the first-best problem
recovers classic results from that literature about optimality of trading at a constant rate.

However, we depart from the optimal execution literature by analyzing the implications of these agency conflicts. Focusing on contracts that
are weighted averages of market prices, we characterize the second-best solution in discrete time, then take the continuous-time limit. The optimal
contract in this limit is an extreme U-shape: atoms of equal mass at the two extreme times and a constant density at interior times. The mass at
the extreme times – and hence the severity of the U-shape – is increasing in permanent price impact, decreasing in the dealer’s risk aversion, and
constant in temporary price impact.

These results shed light on the interplay between price impact and agency conflicts in financial markets. They could also aid in reducing
the transaction costs of pension funds, endowments, or other institutional traders who sometimes outsource the execution of large trades. In
particular, guaranteed TWAP contracts (and similar guaranteed VWAP contracts) are common in practice. Although our results rationalize the
practice of putting equal weight on interior prices, they also indicate that these contracts themselves are unlikely to be optimal unless price
impact is predominantly temporary or the dealer is highly risk averse. Guaranteed MOC contracts, which put full weight on the closing price, are
also commonly used. Although our results rationalize the practice of putting substantial weight on the closing price, they also recommend that
the opening price receive equally substantial weight, so that the contract more closely resembles the U-shape that is optimal in the model. As
regulators review best practices in relation to over-the-counter block trading, they may revisit the wisdom of various pricing benchmarks in light
of our analysis.
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Appendix A. Proofs of results stated in the main text

How the parameter 𝝈 is handled in the proofs. Except for the proofs of Propositions 10 and 11, where 𝜎𝑘 depends on 𝑘, we assume for all proofs that
𝜎 = 1 without loss of generality. Indeed, any parametrization of the model with 𝜎 ≠ 1 is economically-equivalent to an alternative parametrization
in which the price-shock variance is 1 (instead of 𝜎2) and in which the dealer’s risk aversion is 𝜆𝜎2 (instead of 𝜆).

We begin with a lemma that will be used in the proof of Proposition 1.

Lemma 12. For any trading strategy 𝒙 ∈  ,

E

[ 𝑇
∑

𝑡=1
𝑥𝑡

𝑡
∑

𝑠=1
𝜀𝑠

]

= 0.

Proof of Lemma 12. We start by writing

E

[ 𝑇
∑

𝑡=1
𝑥𝑡

𝑡
∑

𝑠=1
𝜀𝑠

]

= E

[ 𝑇
∑

𝑡=1
𝑥𝑡

( 𝑇
∑

𝑠=1
𝜀𝑠 −

𝑇
∑

𝑠=𝑡+1
𝜀𝑠

)]

= E

[ 𝑇
∑

𝑡=1
𝑥𝑡

𝑇
∑

𝑠=1
𝜀𝑠

]

− E

[ 𝑇
∑

𝑡=1
𝑥𝑡

𝑇
∑

𝑠=𝑡+1
𝜀𝑠

]

.

We complete the proof by showing that each of these two terms evaluates to zero:

E

[ 𝑇
∑

𝑡=1
𝑥𝑡

𝑇
∑

𝑠=1
𝜀𝑠

]

= E

[ 𝑇
∑

𝑠=1
𝜀𝑠

𝑇
∑

𝑡=1
𝑥𝑡

]

= E

[ 𝑇
∑

𝑠=1
𝜀𝑠

]

= 0,

E

[ 𝑇
∑

𝑥𝑡
𝑇
∑

𝜀𝑠

]

= E

[ 𝑇
∑

𝑥𝑡
𝑇
∑

E
[

𝜀𝑠|𝑥𝑡
]

]

= 0. □
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Proof of Proposition 1. Given an arbitrary trading strategy 𝒙 ∈  , the expected costs of execution are

E

[ 𝑇
∑

𝑡=1
𝑥𝑡𝑝𝑡

]

= E

[ 𝑇
∑

𝑡=1
𝑥𝑡

(

𝑝0 + 𝛾𝑥𝑡 + 𝜃
𝑡

∑

𝑠=1
𝑥𝑠 +

𝑡
∑

𝑠=1
𝜀𝑠

)]

= 𝑝0E

[ 𝑇
∑

𝑡=1
𝑥𝑡

]

+ 𝛾E

[ 𝑇
∑

𝑡=1
𝑥2𝑡

]

+ 𝜃E

[ 𝑇
∑

𝑡=1
𝑥𝑡

𝑡
∑

𝑠=1
𝑥𝑠

]

+ E

[ 𝑇
∑

𝑡=1
𝑥𝑡

𝑡
∑

𝑠=1
𝜀𝑠

]

.

The first term evaluates to 𝑝0. The last term evaluates to zero by Lemma 12. Observe that 𝜺 has fallen out of the expression. Thus, the first-best
trading strategy, which minimizes this expression, will not be a function of 𝜺—in other words, it will be deterministic. This first-best trading strategy
solves the program

min
(𝑥1 ,…,𝑥𝑇 )⊤∈R𝑇

𝑝0 + 𝛾
𝑇
∑

𝑡=1
𝑥2𝑡 + 𝜃

𝑇
∑

𝑡=1
𝑥𝑡

𝑡
∑

𝑠=1
𝑥𝑠 subject to

𝑇
∑

𝑡=1
𝑥𝑡 = 1.

Taking the Lagrangian (with 𝜇 as the multiplier on the constraint), we obtain

2𝛾𝑥FB𝑡 + 2𝜃𝑥FB𝑡 + 𝜃
∑

𝑠≠𝑡
𝑥FB𝑠 = 𝜇 for all 𝑡 = 1,… , 𝑇 .

These imply 𝑥FB1 = ⋯ = 𝑥FB𝑇 . And from the constraint, we must therefore have 𝑥FB1 = ⋯ = 𝑥FB𝑇 = 1
𝑇 . To obtain the expected costs of execution under

his strategy, we compute

E

[ 𝑇
∑

𝑡=1
𝑥FB𝑡 𝑝𝑡

]

= 𝑝0 + 𝛾
𝑇
∑

𝑡=1

( 1
𝑇

)2
+ 𝜃

𝑇
∑

𝑡=1

1
𝑇

𝑡
∑

𝑠=1

1
𝑇

= 𝑝0 +
𝛾
𝑇

+
𝜃(𝑇 + 1)

2𝑇
. □

Proof of Proposition 2. Consider a class of contracts indexed by (𝜁, 𝛿, 𝐾1,… , 𝐾𝑇−1), where the payment is

𝜏(𝒑) = 𝛿 + 1
𝑇

𝑇
∑

𝑡=1
𝑝𝑡 −

𝑇−1
∑

𝑡=1
𝐾𝑡1[𝑝𝑡 − 𝑝𝑡−1 > 𝜁].

The dealer’s monetary payoff is

𝜏(𝒑) − 𝒙 ⋅ 𝒑 = 𝛿 +
𝑇
∑

𝑡=1
𝑝𝑡

(

1
𝑇

− 𝑥𝑡

)

−
𝑇−1
∑

𝑡=1
𝐾𝑡1[𝑝𝑡 − 𝑝𝑡−1 > 𝜁].

he dealer’s expected utility is therefore

E
[

𝑢
(

𝜏(𝒑) − 𝒙 ⋅ 𝒑
)]

= E

[

𝑢

(

𝛿 +
𝑇
∑

𝑡=1
𝑝𝑡

(

1
𝑇

− 𝑥𝑡

)

−
𝑇−1
∑

𝑡=1
𝐾𝑡1

[

𝑝𝑡 − 𝑝𝑡−1 > 𝜁
]

)]

= −E

[

exp
(

−𝜆𝛿 − 𝜆
𝑇
∑

𝑡=1
𝑝𝑡

(

1
𝑇

− 𝑥𝑡

)

+ 𝜆
𝑇−1
∑

𝑡=1
𝐾𝑡1[𝑝𝑡 − 𝑝𝑡−1 > 𝜁]

)]

= −E

[

exp
(

−𝜆𝛿 − 𝜆
𝑇
∑

𝑡=1

(

𝑝0 + 𝛾𝑥𝑡 + 𝜃
𝑡

∑

𝑠=1
𝑥𝑠 +

𝑡
∑

𝑠=1
𝜀𝑠

)

(

1
𝑇

− 𝑥𝑡

)

+ 𝜆
𝑇−1
∑

𝑡=1
𝐾𝑡1[𝛾(𝑥𝑡 − 𝑥𝑡−1) + 𝜃𝑥𝑡 + 𝜀𝑡 > 𝜁]

)]

= −exp
(

−𝜆𝛿 − 𝜆
𝑇
∑

𝑡=1

(

𝑝0 + 𝛾𝑥𝑡 + 𝜃
𝑡

∑

𝑠=1
𝑥𝑠

)

(

1
𝑇

− 𝑥𝑡

)

)

E

[

E

[

exp
(

−𝜆
𝑇
∑

𝑡=2
𝜀𝑡

( 𝑡−1
∑

𝑠=1
𝑥𝑠 −

𝑡 − 1
𝑇

)

+ 𝜆
𝑇−1
∑

𝑡=1
𝐾𝑡1[𝛾(𝑥𝑡 − 𝑥𝑡−1) + 𝜃𝑥𝑡 + 𝜀𝑡 > 𝜁]

)

|

|

|

|

|

𝑇−1

]]

= −exp
(

−𝜆𝛿 − 𝜆
𝑇
∑

𝑡=1

(

𝑝0 + 𝛾𝑥𝑡 + 𝜃
𝑡

∑

𝑠=1
𝑥𝑠

)

(

1
𝑇

− 𝑥𝑡

)

+ 𝜆2

2

(𝑇−1
∑

𝑠=1
𝑥𝑠 −

𝑇 − 1
𝑇

)2)

× E

[

exp
(

−𝜆
𝑇−1
∑

𝑡=2
𝜀𝑡

( 𝑡−1
∑

𝑠=1
𝑥𝑠 −

𝑡 − 1
𝑇

)

+ 𝜆
𝑇−1
∑

𝑡=1
𝐾𝑡1[𝛾(𝑥𝑡 − 𝑥𝑡−1) + 𝜃𝑥𝑡 + 𝜀𝑡 > 𝜁]

)]

= −exp
(

−𝜆𝛿 − 𝜆
𝑇−1
∑

𝑡=1

(

𝑝0 + 𝛾𝑥𝑡 + 𝜃
𝑡

∑

𝑠=1
𝑥𝑠

)

(

1
𝑇

− 𝑥𝑡

)

− 𝜆

(

𝑝0 + 𝛾

(

1 −
𝑇−1
∑

𝑠=1
𝑥𝑠

)

+ 𝜃

)(

1
𝑇

− 1 +
𝑇−1
∑

𝑠=1
𝑥𝑠

)

+ 𝜆2

2

(𝑇−1
∑

𝑠=1
𝑥𝑠 −

𝑇 − 1
𝑇

)2)

×
𝑇−1
∏

𝑡=1
E

[

exp
(

−𝜆𝜀𝑡

( 𝑡−1
∑

𝑠=1
𝑥𝑠 −

𝑡 − 1
𝑇

)

+ 𝜆𝐾𝑡1
[

𝛾(𝑥𝑡 − 𝑥𝑡−1) + 𝜃𝑥𝑡 + 𝜀𝑡 > 𝜁
]

)]

= −exp
(

−𝜆𝛿 − 𝜆
𝑇−1
∑

𝑡=1

(

𝑝0 + 𝛾𝑥𝑡 + 𝜃
𝑡

∑

𝑠=1
𝑥𝑠

)

(

1
𝑇

− 𝑥𝑡

)

− 𝜆

(

𝑝0 + 𝛾

(

1 −
𝑇−1
∑

𝑠=1
𝑥𝑠

)

+ 𝜃

)(

1
𝑇

− 1 +
𝑇−1
∑

𝑠=1
𝑥𝑠

)

+ 𝜆2

2

𝑇
∑

𝑡=1

( 𝑡−1
∑

𝑠=1
𝑥𝑠 −

𝑡 − 1
𝑇

)2)

×
𝑇−1
∏

𝑡=1

(

exp(𝜆𝐾𝑡) − (exp(𝜆𝐾𝑡) − 1)𝛷

(

𝜁 − 𝛾(𝑥𝑡 − 𝑥𝑡−1) − 𝜃𝑥𝑡 + 𝜆

( 𝑡−1
∑

𝑠=1
𝑥𝑠 −

𝑡 − 1
𝑇

)))

,

using for the last equality that 𝜀𝑡 is normally distributed with standard deviation one and mean −𝜆
(
∑𝑡−1

𝑠=1 𝑥𝑠 −
𝑡−1
𝑇

)

under the probability measure
𝑄𝑡 given by 𝑑𝑄𝑡

𝑑𝑃 = exp
(

− 𝜆𝜀𝑡
(
∑𝑡−1

𝑠=1 𝑥𝑠 −
𝑡−1
𝑇

)

− 𝜆2

2

(
∑𝑡−1

𝑠=1 𝑥𝑠 −
𝑡−1
𝑇

)2)
. Taking the logarithm and the derivative with respect to 𝑥𝑗 at 𝑥𝑠 = 1∕𝑇 for all

𝑠 gives

𝜆
(

𝑝0 + 𝛾 1 + 𝜃
𝑗
)

− 𝜆
(

𝑝0 + 𝛾 1 + 𝜃
)

17
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−
𝑇−1
∑

𝑡=1

𝑑
𝑑𝑥𝑗

𝛷
(

𝜁 − 𝛾(𝑥𝑡 − 𝑥𝑡−1) − 𝜃𝑥𝑡 + 𝜆
(
∑𝑡−1

𝑠=1 𝑥𝑠 −
𝑡−1
𝑇

))

|

|

|𝑥𝑠=1∕𝑇 ∀𝑠
1

1−exp(−𝜆𝐾𝑡)
−𝛷(𝜁 − 𝛾∕𝑇1[𝑡 = 1] − 𝜃∕𝑇 )

= 𝜆𝜃
𝑗 − 𝑇
𝑇

+
(𝛾 + 𝜃)𝜙(𝜁 − 𝛾∕𝑇1[𝑗 = 1] − 𝜃∕𝑇 )
1

1−exp(−𝜆𝐾𝑗 )
−𝛷(𝜁 − 𝛾∕𝑇1[𝑗 = 1] − 𝜃∕𝑇 )

−
(𝛾 + 𝜆)𝜙(𝜁 − 𝜃∕𝑇 )
1

1−exp(−𝜆𝐾𝑗+1)
−𝛷(𝜁 − 𝜃∕𝑇 )

1[𝑗 < 𝑇 − 1] −
𝑇−1
∑

𝑡=𝑗+2

𝜆𝜙(𝜁 − 𝜃∕𝑇 )
1

1−exp(−𝜆𝐾𝑡)
−𝛷(𝜁 − 𝜃∕𝑇 )

.

We set these expressions to zero and solve for 𝐾𝑗 iteratively for 𝑗 = 𝑇 − 1, 𝑇 − 2,… , 1. To this end, we write

𝑎𝑛 =
(𝛾 + 𝜃)𝜙(𝜁 − 𝛾∕𝑇1[𝑛 = 𝑇 − 1] − 𝜃∕𝑇 )
1

1−exp(−𝜆𝐾𝑇−𝑛)
−𝛷(𝜁 − 𝛾∕𝑇1[𝑛 = 𝑇 − 1] − 𝜃∕𝑇 )

(A.1)

for 𝑛 = 1, 2,… , 𝑇 − 1, and find

𝑎1 =
𝜆𝜃
𝑇

𝑎2 =
𝜆𝜃
𝑇

(

2 +
𝛾 + 𝜆
𝛾 + 𝜃

)

𝑎3 =
𝜆𝜃
𝑇

(

3 +
𝛾 + 𝜆
𝛾 + 𝜃

(

2 +
𝛾 + 𝜆
𝛾 + 𝜃

)

+ 𝜆
𝛾 + 𝜃

)

𝑎𝑛 =
𝜆𝜃
𝑇

𝑛 +
𝛾 + 𝜆
𝛾 + 𝜃

𝑎𝑛−1 +
𝜆

𝛾 + 𝜃

𝑛−2
∑

𝑗=1
𝑎𝑗

𝑎𝑛−1 =
𝜆𝜃
𝑇

(𝑛 − 1) +
𝛾 + 𝜆
𝛾 + 𝜃

𝑎𝑛−2 +
𝜆

𝛾 + 𝜃

𝑛−3
∑

𝑗=1
𝑎𝑗 .

Combining the last two formulae yields

𝑎𝑛 =
𝜆𝜃
𝑇

𝑛 +
𝛾 + 𝜆
𝛾 + 𝜃

𝑎𝑛−1 +
𝜆

𝛾 + 𝜃
𝑎𝑛−2 + 𝑎𝑛−1 −

𝜆𝜃
𝑇

(𝑛 − 1) −
𝛾 + 𝜆
𝛾 + 𝜃

𝑎𝑛−2

= 𝜆𝜃
𝑇

+
2𝛾 + 𝜆 + 𝜃

𝛾 + 𝜃
𝑎𝑛−1 −

𝛾
𝛾 + 𝜃

𝑎𝑛−2, (A.2)

which we can write as
(

𝑎𝑛
𝑎𝑛−1

)

=

(

𝜆𝜃
𝑇
0

)

+

(

2𝛾+𝜆+𝜃
𝛾+𝜃 − 𝛾

𝛾+𝜃
1 0

)

(

𝑎𝑛−1
𝑎𝑛−2

)

=
𝑛−3
∑

𝑗=0

(

2𝛾+𝜆+𝜃
𝛾+𝜃 − 𝛾

𝛾+𝜃
1 0

)𝑗 ( 𝜆𝜃
𝑇
0

)

+

(

2𝛾+𝜆+𝜃
𝛾+𝜃 − 𝛾

𝛾+𝜃
1 0

)𝑛−2 ( 𝜆𝜃
𝑇

(

2 + 𝛾+𝜆
𝛾+𝜃

)

𝜆𝜃
𝑇

)

.

This shows that 𝑎𝑛 is uniquely defined in terms of 𝑛, 𝑇 , 𝜆, 𝛾, and 𝜃. Note that 𝑎𝑛 is strictly positive and increasing in 𝑛, which follows from (A.2)
by induction.

Let 𝜁 be such that 𝜙(𝜁−𝛾∕𝑇−𝜃∕𝑇 )
1−𝛷(𝜁−𝛾∕𝑇−𝜃∕𝑇 ) > 𝑎𝑇−1

𝛾+𝜃 ; this is possible because the inverse Mills ratio 𝜙(𝑥)
1−𝛷(𝑥) grows without bound as 𝑥 increases. It implies

𝜙(𝜁−𝜃∕𝑇 )
1−𝛷(𝜁−𝜃∕𝑇 ) >

𝑎𝑛
𝛾+𝜃 for all 𝑛 = 1, 2,… , 𝑇 − 1. Let 𝜁 ≥ 𝜁 . Solving (A.1) for 𝐾𝑇−𝑛 gives

𝐾𝑇−𝑛 =
1
𝜆
log

(

1 +
𝑎𝑛

(𝛾 + 𝜃)𝜙(𝜁 − 𝛾∕𝑇1[𝑛 = 𝑇 − 1] − 𝜃∕𝑇 ) − 𝑎𝑛
(

1 −𝛷(𝜁 − 𝛾∕𝑇1[𝑛 = 𝑇 − 1] − 𝜃∕𝑇 )
)

)

. (A.3)

This choice leaves the dealer with expected utility

E
[

𝑢
(

𝜏(𝒑) − 𝒙 ⋅ 𝒑
)]|

|

|

|𝑥𝑠=1∕𝑇 ∀𝑠
= −exp(−𝜆𝛿)

𝑇−1
∏

𝑡=1

1
1 − 𝑎𝑇−𝑡

𝛾+𝜃
1−𝛷(𝜁−𝛾∕𝑇1[𝑡=1]−𝜃∕𝑇 )
𝜙(𝜁−𝛾∕𝑇1[𝑡=1]−𝜃∕𝑇 )

.

For this contract to satisfy (IR), this must be at least 𝑢(0) = −1. Choosing 𝛿 to make this constraint hold with equality, we obtain

𝛿 = −1
𝜆

𝑇−1
∑

𝑡=1
log

(

1 −
𝑎𝑇−𝑡
𝛾 + 𝜃

1 −𝛷(𝜁 − 𝛾∕𝑇1[𝑡 = 1] − 𝜃∕𝑇 )
𝜙(𝜁 − 𝛾∕𝑇1[𝑡 = 1] − 𝜃∕𝑇 )

)

. (A.4)

Finally, we argue that the client can approximate her first-best payoff arbitrarily closely by setting 𝜁 ≥ 𝜁 sufficiently large, setting 𝐾𝑇−𝑛 according
to (A.3), and setting 𝛿 according to (A.4). Indeed, because 𝛿 is set to satisfy (IR), the client accepts such a contract. Hence, the client’s expected
costs of execution E

[

𝜏(𝒑)
]

are bounded above by E
[

𝛿+ 1
𝑇
∑𝑇

𝑡=1 𝑝𝑡
]

= 𝛿+𝑝0+
𝛾
𝑇 + 𝜃

𝑇
∑𝑇

𝑡=1
∑𝑡

𝑠=1 𝑥𝑠. Because 𝐾1,… , 𝐾𝑇−1 are set so that 𝒙 =
( 1
𝑇 ,… , 1

𝑇

)⊤

satisfies (IC), this bound becomes 𝛿 + 𝑝0 + 𝛾
𝑇 + 𝜃(𝑇+1)

2𝑇 . Applying Proposition 1, the client’s first-best costs are exceeded by at most 𝛿. However,
according to (A.4), 𝛿 can be made arbitrarily close to zero by setting 𝜁 sufficiently large. □

Proof of Lemma 3. The dealer’s expected utility equals

E[𝑢(𝝉 ⋅ 𝒑 − 𝒙 ⋅ 𝒑)] = −E

[

exp

(

𝜆
𝑇
∑

𝑡=1
(𝑥𝑡 − 𝜏𝑡)𝑝𝑡

)]

= −E

[

exp

(

𝜆
𝑇
∑

(𝑥𝑡 − 𝜏𝑡)

( 𝑡
∑

(𝜃𝑥𝑗 + 𝜀𝑗 ) + 𝛾𝑥𝑡

))]
18
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w
𝑋
b

w

= −E

[

exp

(

𝜆
𝑇
∑

𝑡=1
(𝑥𝑡 − 𝜏𝑡)

( 𝑡
∑

𝑗=1
𝜃𝑥𝑗 + 𝛾𝑥𝑡

)

+ 𝜆
𝑇
∑

𝑗=1
𝜀𝑗

𝑇
∑

𝑡=𝑗
(𝑥𝑡 − 𝜏𝑡)

)]

.

Instead of maximizing this expression over 𝑥𝑡 subject to ∑𝑇
𝑡=1 𝑥𝑡 = 1, we set 𝑋𝑗 =

∑𝑗
𝑡=1 𝑥𝑡 with 𝑋0 = 0 and 𝑋𝑇 = 1, and minimize

− E[𝑢(𝝉 ⋅ 𝒑 − 𝒙 ⋅ 𝒑)] = E

[

exp

(

𝜆
𝑇
∑

𝑡=1
(𝑋𝑡 −𝑋𝑡−1 − 𝜏𝑡)

(

𝜃𝑋𝑡 + 𝛾(𝑋𝑡 −𝑋𝑡−1)
)

− 𝜆
𝑇
∑

𝑡=1
𝜀𝑡

(

𝑋𝑡−1 −
𝑡−1
∑

𝑗=1
𝜏𝑗

)

)]

(A.5)

over 𝑋1, 𝑋2,… , 𝑋𝑇−1. Because 𝑋𝑡 needs to be chosen before the price in period 𝑡 is observable, 𝑋𝑡 is 𝑡−1-measurable. We start by conditioning
(A.5) on 𝑇−1 and will then go backward subsequently. From the law of iterated expectations, we obtain

− E[𝑢(𝝉 ⋅ 𝒑 − 𝒙 ⋅ 𝒑)]

= E

[

E

[

exp

(

𝜆
𝑇
∑

𝑡=1
(𝑋𝑡 −𝑋𝑡−1 − 𝜏𝑡)

(

𝜃𝑋𝑡 + 𝛾(𝑋𝑡 −𝑋𝑡−1)
)

− 𝜆
𝑇−1
∑

𝑡=1
𝜀𝑡+1

(

𝑋𝑡 −
𝑡

∑

𝑗=1
𝜏𝑗

)

)

|

|

|

|

|

𝑇−1

]]

= E

[

exp

(

𝜆
𝑇
∑

𝑡=1
(𝑋𝑡 −𝑋𝑡−1 − 𝜏𝑡)

(

𝜃𝑋𝑡 + 𝛾(𝑋𝑡 −𝑋𝑡−1)
)

− 𝜆
𝑇−2
∑

𝑡=1
𝜀𝑡+1

(

𝑋𝑡 −
𝑡

∑

𝑗=1
𝜏𝑗

)

)

E

[

exp

(

−𝜆𝜀𝑇

(

𝑋𝑇−1 −
𝑇−1
∑

𝑗=1
𝜏𝑗

))

|

|

|

|

|

𝑇−1

]]

= E

[

exp

(

𝜆
𝑇
∑

𝑡=1
(𝑋𝑡 −𝑋𝑡−1 − 𝜏𝑡)

(

𝜃𝑋𝑡 + 𝛾(𝑋𝑡 −𝑋𝑡−1)
)

− 𝜆
𝑇−2
∑

𝑡=1
𝜀𝑡+1

(

𝑋𝑡 −
𝑡

∑

𝑗=1
𝜏𝑗

)

+ 𝜆2

2

(

𝑋𝑇−1 −
𝑇−1
∑

𝑗=1
𝜏𝑗

)2)]

= E

[

exp

(

𝜆
𝑇−2
∑

𝑡=1
(𝑋𝑡 −𝑋𝑡−1 − 𝜏𝑡)

(

𝜃𝑋𝑡 + 𝛾(𝑋𝑡 −𝑋𝑡−1)
)

− 𝜆
𝑇−2
∑

𝑡=1
𝜀𝑡+1

(

𝑋𝑡 −
𝑡

∑

𝑗=1
𝜏𝑗

)

)

× exp

(

𝜆
𝑇
∑

𝑡=𝑇−1
(𝑋𝑡 −𝑋𝑡−1 − 𝜏𝑡)

(

𝜃𝑋𝑡 + 𝛾(𝑋𝑡 −𝑋𝑡−1)
)

+ 𝜆2

2

(

𝑋𝑇−1 −
𝑇−1
∑

𝑗=1
𝜏𝑗

)2)]

,

here we used that 𝑋𝑇−1 is 𝑇−2-measurable and thus also 𝑇−1-measurable, along with the fact that 𝜀𝑇 is independent of 𝑇−1. We note that
𝑇−1 appears only in the last line, but not in the penultimate line, and the dependence on 𝑋𝑇−1 is quadratic. Therefore, the optimal 𝑋𝑇−1 is given
y the first-order condition

− 𝜆
(

𝜃𝑋𝑇 + 𝛾(𝑋𝑇 −𝑋𝑇−1)
)

− 𝜆𝛾(𝑋𝑇 −𝑋𝑇−1 − 𝜏𝑇 ) + 𝜆(𝜃𝑋𝑇−1 + 𝛾𝑋𝑇−1 − 𝛾𝑋𝑇−2) + 𝜆(𝜃 + 𝛾)(𝑋𝑇−1 −𝑋𝑇−2 − 𝜏𝑇−1) + 𝜆2
(

𝑋𝑇−1 −
𝑇−1
∑

𝑗=1
𝜏𝑗

)

= 0,

hich we rewrite as

−
(

𝜃 + 2𝛾
)

𝑋𝑇 +
(

𝜆 + 2𝜃 + 4𝛾
)

𝑋𝑇−1 − (𝜃 + 2𝛾)𝑋𝑇−2 = −𝛾𝜏𝑇 + (𝜃 + 𝛾)𝜏𝑇−1 + 𝜆
𝑇−1
∑

𝑗=1
𝜏𝑗 , (A.6)

This implies that 𝑋𝑇−1 is 𝑇−3-measurable because so is 𝑋𝑇−2 and all other terms are deterministic. Next, we condition on 𝑇−2 to obtain

E

[

exp

(

𝜆
𝑇−2
∑

𝑡=1
(𝑋𝑡 −𝑋𝑡−1 − 𝜏𝑡)

(

𝜃𝑋𝑡 + 𝛾(𝑋𝑡 −𝑋𝑡−1)
)

− 𝜆
𝑇−2
∑

𝑡=1
𝜀𝑡+1

(

𝑋𝑡 −
𝑡

∑

𝑗=1
𝜏𝑗

)

)

× exp

(

𝜆
𝑇
∑

𝑡=𝑇−1
(𝑋𝑡 −𝑋𝑡−1 − 𝜏𝑡)

(

𝜃𝑋𝑡 + 𝛾(𝑋𝑡 −𝑋𝑡−1)
)

+ 𝜆2

2

(

𝑋𝑇−1 −
𝑇−1
∑

𝑗=1
𝜏𝑗

)2)]

= E

[

E

[

exp

(

𝜆
𝑇−2
∑

𝑡=1
(𝑋𝑡 −𝑋𝑡−1 − 𝜏𝑡)

(

𝜃𝑋𝑡 + 𝛾(𝑋𝑡 −𝑋𝑡−1)
)

− 𝜆
𝑇−2
∑

𝑡=1
𝜀𝑡+1

(

𝑋𝑡 −
𝑡

∑

𝑗=1
𝜏𝑗

)

)

|

|

|

|

|

𝑇−2

]

× exp

(

𝜆
𝑇
∑

𝑡=𝑇−1
(𝑋𝑡 −𝑋𝑡−1 − 𝜏𝑡)

(

𝜃𝑋𝑡 + 𝛾(𝑋𝑡 −𝑋𝑡−1)
)

+ 𝜆2

2

(

𝑋𝑇−1 −
𝑇−1
∑

𝑗=1
𝜏𝑗

)2)]

= E

[

exp

(

𝜆
𝑇
∑

𝑡=1
(𝑋𝑡 −𝑋𝑡−1 − 𝜏𝑡)

(

𝜃𝑋𝑡 + 𝛾(𝑋𝑡 −𝑋𝑡−1)
)

− 𝜆
𝑇−3
∑

𝑡=1
𝜀𝑡+1

(

𝑋𝑡 −
𝑡

∑

𝑗=1
𝜏𝑗

)

)

× exp

(

𝜆2

2

(

𝑋𝑇−2 −
𝑇−2
∑

𝑗=1
𝜏𝑗

)2

+ 𝜆2

2

(

𝑋𝑇−1 −
𝑇−1
∑

𝑗=1
𝜏𝑗

)2)]

.

The terms within the exponential function that depend on 𝑋𝑇−2 are

𝜆
𝑇−1
∑

𝑡=𝑇−2
(𝑋𝑡 −𝑋𝑡−1 − 𝜏𝑡)

(

𝜃𝑋𝑡 + 𝛾(𝑋𝑡 −𝑋𝑡−1)
)

+ 𝜆2

2

(

𝑋𝑇−2 −
𝑇−2
∑

𝑗=1
𝜏𝑗

)2

so that the first-order condition implies

−(𝜃 + 2𝛾)𝑋𝑇−1 + (𝜆 + 2𝜃 + 4𝛾)𝑋𝑇−2 − (𝜃 + 2𝛾)𝑋𝑇−3 = −𝛾𝜏𝑇−1 + (𝜃 + 𝛾)𝜏𝑇−2 + 𝜆
𝑇−2
∑

𝑗=1
𝜏𝑗 .

Because 𝑋𝑇−1 is a function of 𝑋𝑇−2 in the optimum by (A.6) and 𝑋𝑇−3 is 𝑇−4-measurable while all other terms are deterministic, this implies
that 𝑋 is  -measurable. And, using again that 𝑋 is a function of 𝑋 , this implies that 𝑋 is  -measurable as well. Continuing this
19
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procedure, we obtain in the end that all 𝑋𝑡 are deterministic and satisfy

− (𝜃 + 2𝛾)𝑋𝑡+1 + (𝜆 + 2𝜃 + 4𝛾)𝑋𝑡 − (𝜃 + 2𝛾)𝑋𝑡−1 = −𝛾𝜏𝑡+1 + (𝜃 + 𝛾)𝜏𝑡 + 𝜆
𝑡

∑

𝑗=1
𝜏𝑗 , 𝑡 = 1, 2,… , 𝑇 − 1. (A.7)

This linear system of equations can be written as 𝐴𝑿 = 𝐸𝝉, hence 𝒙 = 𝐹𝑿 = 𝐹𝐴−1𝐸𝝉, using the 𝑇 × 𝑇 matrices 𝐴, 𝐸, and 𝐹 (written here with
general 𝜎, for reference in the main text) given by

𝐴 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜆𝜎2 + 2𝜃 + 4𝛾 −(𝜃 + 2𝛾) 0 0 ⋯
−(𝜃 + 2𝛾) 𝜆𝜎2 + 2𝜃 + 4𝛾 −(𝜃 + 2𝛾) 0 ⋯

0 −(𝜃 + 2𝛾) 𝜆𝜎2 + 2𝜃 + 4𝛾 −(𝜃 + 2𝛾)
⋮ ⋱ ⋱ ⋱

− (𝜃 + 2𝛾) 𝜆𝜎2 + 2𝜃 + 4𝛾 −(𝜃 + 2𝛾)
0 ⋯ 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

𝐸 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜃 + 𝛾 + 𝜆𝜎2 −𝛾 0 0 0 ⋯
𝜆𝜎2 𝜃 + 𝛾 + 𝜆𝜎2 −𝛾 0 0 ⋯
𝜆𝜎2 𝜆𝜎2 𝜃 + 𝛾 + 𝜆𝜎2 −𝛾 0 ⋯
⋮ ⋮ ⋱ ⋱

𝜆𝜎2 𝜆𝜎2 𝜃 + 𝛾 + 𝜆𝜎2 −𝛾
1 ⋯ 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

𝐹 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 ⋯
−1 1 0 0 ⋯
0 −1 1 0 ⋯
⋮ ⋱ ⋱
0 ⋯ −1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. □

(A.8)

Proof of Proposition 4. We can write 𝐴 = 𝐼�̃�, where

�̃� =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜆𝜎2 + 2𝜃 + 4𝛾 −(𝜃 + 2𝛾) 0 0 ⋯
−(𝜃 + 2𝛾) 𝜆𝜎2 + 2𝜃 + 4𝛾 −(𝜃 + 2𝛾) 0 ⋯

0 −(𝜃 + 2𝛾) 𝜆𝜎2 + 2𝜃 + 4𝛾 −(𝜃 + 2𝛾)
⋮ ⋱ ⋱ ⋱

− (𝜃 + 2𝛾) 𝜆𝜎2 + 2𝜃 + 4𝛾 −(𝜃 + 2𝛾)
0 ⋯ 0 𝜆𝜎2 + 2𝜃 + 4𝛾

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, 𝐼 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 0 ⋯ 0 0
0 1 ⋯ 0 0
⋮ ⋱ ⋱ ⋮ ⋮
0 0 ⋯ 1 0
0 0 ⋯ 0 1

𝜆𝜎2+2𝜃+4𝛾

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Note that �̃� is a Z-matrix (i.e., a square matrix where all off-diagonal entries are nonpositive). In fact, �̃� is an M-matrix. Indeed, we can express
�̃� = (𝜆𝜎2 + 2𝜃 + 4𝛾)𝐼 − �̃�, where

�̃� =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 𝜃 + 2𝛾 0 0 ⋯
𝜃 + 2𝛾 0 𝜃 + 2𝛾 0 ⋯

0 𝜃 + 2𝛾 0 𝜃 + 2𝛾
⋮ ⋱ ⋱ ⋱

𝜃 + 2𝛾 0 𝜃 + 2𝛾
0 ⋯ 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

is a matrix whose eigenvalues (i.e., ±(𝜃 + 2𝛾)
√

2 and 0) are bounded in magnitude by 𝜆𝜎2 + 2𝜃 + 4𝛾. Because �̃� is an M-matrix, its inverse is
a nonnegative matrix. Hence, 𝐴−1 = �̃�−1𝐼−1 is also nonnegative. Next, observe that 𝐸𝝉TWAP = 1

𝑇 (𝜃 + 𝜆𝜎2, 𝜃 + 2𝜆𝜎2,… , 𝜃 + (𝑇 − 1)𝜆𝜎2, 𝑇 )⊤, and
𝐹−1𝒙FB = 1

𝑇 (𝜆𝜎
2, 2𝜆𝜎2,… , (𝑇 −1)𝜆𝜎2, 𝑇 )⊤, so 𝐸𝝉TWAP ≥ 𝐴𝐹−1𝒙FB (where ≥ is in the component-wise sense). Using the fact that 𝐴−1 is nonnegative,

𝐹−1𝐹𝐴−1𝐸𝝉TWAP = 𝐴−1𝐸𝝉TWAP ≥ 𝐹−1𝒙FB,

which is precisely what it means for 𝐹𝐴−1𝐸𝝉TWAP to be frontloaded relative to 𝒙FB. For the final claim, note that all the inequalities can be replaced
with equalities if and only if 𝜃 = 0. □

Proof of Proposition 5. The client’s expected cost under a contract 𝝉 is

E[𝝉 ⋅ 𝒑] = E

[ 𝑇
∑

𝑡=1
𝜏𝑡𝑝𝑡

]

= E

[ 𝑇
∑

𝑡=1
𝜏𝑡

(

𝑝0 +
𝑡

∑

𝑗=1
(𝜃𝑥𝑗 + 𝜀𝑗 ) + 𝛾𝑥𝑡

)]

= 𝑝0 +
𝑇
∑

𝑡=1
𝜏𝑡

( 𝑡
∑

𝑗=1
𝜃𝑥𝑗 + 𝛾𝑥𝑡

)

= 𝑝0 + 𝜃
𝑇
∑

𝑡=1
𝜏𝑡𝑋𝑡 + 𝛾

𝑇
∑

𝑡=1
𝜏𝑡(𝑋𝑡 −𝑋𝑡−1) = 𝑝0 + 𝜃𝝉⊤𝐴−1𝐸𝝉 + 𝛾𝝉⊤𝐹𝐴−1𝐸𝝉 = 𝑝0 +

1
2
𝝉⊤𝑀𝝉 (A.9)

here 𝐹 and 𝑀 are defined in (A.8) and (3), respectively. Therefore, we minimize 1
2 𝝉

⊤𝑀𝝉 subject to 𝝉⊤1 = 1, where 1 = (1, 1,… , 1)⊤ denotes a
-dimensional vector of ones. From the Lagrange method (and using the symmetry of 𝑀), it follows that

𝑀𝝉∗ − 𝜇1 = 0,

ence 𝝉∗ = 𝜇𝑀−11 and 1⊤𝝉∗ = 𝜇1⊤𝑀−11 = 1. We obtain 𝜇 = 1
1⊤𝑀−11

and thus 𝝉∗ = 1
1⊤𝑀−11

𝑀−11 and 𝒙∗ = 𝐹𝐴−1𝐸𝝉∗ = 1
1⊤𝑀−11

𝐹𝐴−1𝐸𝑀−11,
sing Lemma 3. We can compute the client’s expected costs of execution under 𝝉∗ = 1

1⊤𝑀−11
𝑀−11 as

𝑝 + 1 (𝝉∗)⊤𝑀𝝉∗ = 𝑝 + 1 (1⊤𝑀−11)−21⊤(𝑀−1)⊤𝑀𝑀−11 = 𝑝 + 1 . □
20
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Proof of Corollary 6. Claim (i): It follows from (A.7) with 𝛾 = 𝜆 = 0 that

−𝑥𝑡+1 + 𝑥𝑡 = 𝜏𝑡 for 𝑡 = 1, 2,… , 𝑇 − 1,

which implies

𝑥𝑡 = 𝑥𝑡+1 + 𝜏𝑡 = 𝑥𝑡+2 + 𝜏𝑡 + 𝜏𝑡+1 = ⋯ = 𝑐 +
𝑇
∑

𝑠=𝑡
𝜏𝑠

for some constant 𝑐 and all 𝑡. To determine 𝑐, we use that ∑𝑇
𝑡=1 𝑥𝑡 = 1, hence

𝑐 = 1
𝑇

− 1
𝑇

𝑇
∑

𝑡=1

𝑇
∑

𝑠=𝑡
𝜏𝑠 =

1
𝑇

−
𝑇
∑

𝑠=1

𝑠
𝑇
𝜏𝑠.

Claim (ii): Define 𝐺 as the 𝑇 × 𝑇 matrix whose first column and last row are all 1, and otherwise the 𝑖𝑗 entry is 𝑖(𝑇 + 1 − 𝑗)∕𝑇 for 𝑗 ≥ 𝑖 and
(𝑇 + 1 − 𝑗)∕𝑇 − 𝑖 + 𝑗 for 𝑗 < 𝑖. In this case of 𝛾 = 𝜆 = 0, it can be checked that 𝐸 = 𝐴𝐺. It follows that 𝐴−1𝐸 = 𝐺. Note that for all 𝑡:

𝐺𝑡1 + 𝐺⊤
𝑡1 + 𝐺𝑡𝑇 + 𝐺⊤

𝑡𝑇 = 𝐺𝑡1 + 𝐺1𝑡 + 𝐺𝑡𝑇 + 𝐺𝑇 𝑡 = 1 + (𝑇 + 1 − 𝑡)∕𝑇 + 𝑡∕𝑇 + 1 = 3 + 1∕𝑇 .

ext, define 𝒗 =
( 1
2 , 0,… , 0, 12

)⊤
. We compute

𝑀𝒗 = 𝜃(𝐴−1𝐸 + 𝐸⊤(𝐴−1)⊤)𝒗 = 𝜃(𝐺 + 𝐺⊤)𝒗 = 𝜃
2
(3 + 1∕𝑇 )1.

his implies that 𝑀−11 = 2𝑇
𝜃(3𝑇+1)𝒗 and 1⊤𝑀−11 = 2𝑇

𝜃(3𝑇+1) . Thus, 𝝉∗ = 1
1⊤𝑀−11

𝑀−11 = 𝒗, as claimed. We also compute

𝒙∗ = 𝐹𝐴−1𝐸𝒗 = 𝐹𝐺𝒗 = 1
2
𝐹 (1 + 1∕𝑇 , 1 + 2∕𝑇 ,… , 2)⊤ = 1

2
(1 + 1∕𝑇 , 1∕𝑇 ,… , 1∕𝑇 )⊤,

as claimed. Finally, the client’s expected costs of execution are 𝑝0 +
1

21⊤𝑀−11
= 𝑝0 +

𝜃(3𝑇+1)
4𝑇 , as claimed. □

Proof of Corollary 7. Claim (i): It follows from (A.7) with 𝜃 = 𝜆 = 0 that

−2𝑥𝑡+1 + 2𝑥𝑡 = −𝜏𝑡+1 + 𝜏𝑡 for 𝑡 = 1, 2,… , 𝑇 − 1,

which implies

𝑥𝑡 = 𝑥𝑡+1 −
1
2
𝜏𝑡+1 +

1
2
𝜏𝑡 = 𝑥𝑡+2 −

1
2
𝜏𝑡+2 +

1
2
𝜏𝑡 = ⋯ = 𝑐 + 1

2
𝜏𝑡

for some constant 𝑐 and all 𝑡. To determine 𝑐, we use that ∑𝑇
𝑡=1 𝑥𝑡 = 1, hence

𝑐 = 1
𝑇

− 1
2𝑇

𝑇
∑

𝑡=1
𝜏𝑡 =

1
2𝑇

.

Claim (ii): For additional generality in this part of the proof, we deliberately do not use the assumption that 𝜆 = 0. To prove 𝝉∗ =
( 1
𝑇 ,… , 1

𝑇

)⊤
,

t is enough to show that 1 is an eigenvector of 𝑀 because 𝑀𝝉∗ = 1
1⊤𝑀−11

1 by Proposition 5. To aid in showing that, we first define

𝒗1 =
(

𝜆, 2𝜆,… , (𝑇 − 1)𝜆, 𝑇
)⊤, 𝒗2 = (0,… , 0, 1)⊤ and 𝒗3 = (1, 2,… , 𝑇 )⊤.

In this case of 𝜃 = 0, observe that 𝒗1 = 𝐴𝒗3, which implies 𝐴−1𝒗1 = 𝒗3. Observe also that 𝒗⊤2 = 𝒗⊤2𝐴, which implies (𝐴−1)⊤𝒗2 = 𝒗2. We then compute

𝑀1 = 𝛾𝐹𝐴−1𝐸1 + 𝛾𝐸⊤(𝐴−1)⊤𝐹⊤1 = 𝛾𝐹𝐴−1𝒗1 + 𝛾𝐸⊤(𝐴−1)⊤𝒗2 = 𝛾𝐹𝒗3 + 𝛾𝐸⊤𝒗2 = 𝛾1 + 𝛾1 = 2𝛾1, (A.10)

stablishing that 1 is an eigenvector of 𝑀 , as required. For the dealer’s trading strategy, we deduce from Proposition 5 that

𝒙∗ = 1
1⊤𝑀−11

𝐹𝐴−1𝐸𝑀−11 =
2𝛾
𝑇

𝐹𝐴−1𝐸 1
2𝛾
1 = 1

𝑇
1,

here the second equality uses (A.10) to obtain 1
1⊤𝑀−11

= 2𝛾
𝑇 and 𝑀−11 = 1

2𝛾 1. Finally, we compute the client’s expected costs of execution as
𝑝0 +

1
21⊤𝑀−11

= 𝑝0 +
𝛾
𝑇 . □

roof of Corollary 8. Claim (i): Dividing (A.7) by 𝜆 and then letting 𝜆 go to infinity gives 𝑋𝑡 =
∑𝑡

𝑗=1 𝜏𝑗 for 𝑡 = 1, 2,… , 𝑇 − 1, hence 𝑥𝑡 = 𝜏𝑡 for all
𝑡 = 1, 2,… , 𝑇 .

Claim (ii): Let 𝑄 be the lower-triangular matrix with all entries of 1 on and below the diagonal; let 𝛬 be the diagonal matrix that has 𝜆 everywhere
on its diagonal except for the last entry, which equals 1:

𝑄 =

⎛

⎜

⎜

⎜

⎜

1 0 ⋯ 0
1 1 ⋯ 0
⋮ ⋱ ⋮

⎞

⎟

⎟

⎟

⎟

, 𝛬 =

⎛

⎜

⎜

⎜

⎜

𝜆 0 ⋯ 0
0 𝜆 ⋯ 0
⋮ ⋱ ⋮

⎞

⎟

⎟

⎟

⎟

.

21

⎝

1 1 ⋯ 1
⎠ ⎝

0 0 ⋯ 1
⎠
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We begin by showing lim𝜆→∞ 𝐴−1𝐸 = 𝑄. To this end, we note that 𝛬−1 is a diagonal matrix that has 1∕𝜆 everywhere on its diagonal except for the
last entry which equals 1, and we then compute

lim
𝜆→∞

𝛬−1𝐸 = lim
𝜆→∞

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(𝜃 + 𝛾 + 𝜆)∕𝜆 −𝛾∕𝜆 0 0 0 ⋯
1 (𝜃 + 𝛾 + 𝜆)∕𝜆 −𝛾∕𝜆 0 0 ⋯
1 1 (𝜃 + 𝛾 + 𝜆)∕𝜆 −𝛾∕𝜆 0 ⋯
⋮ ⋮ ⋱ ⋱
1 1 (𝜃 + 𝛾 + 𝜆)∕𝜆 −𝛾∕𝜆
1 ⋯ 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= 𝑄,

lim
𝜆→∞

𝛬−1𝐴 = lim
𝜆→∞

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(𝜆 + 2𝜃 + 4𝛾)∕𝜆 −(𝜃 + 2𝛾)∕𝜆 0 0 ⋯
−(𝜃 + 2𝛾)∕𝜆 (𝜆 + 2𝜃 + 4𝛾)∕𝜆 −(𝜃 + 2𝛾)∕𝜆 0 ⋯

0 −(𝜃 + 2𝛾)∕𝜆 (𝜆 + 2𝜃 + 4𝛾)∕𝜆 −(𝜃 + 2𝛾)∕𝜆
⋮ ⋱ ⋱ ⋱

− (𝜃 + 2𝛾)∕𝜆 (𝜆 + 2𝜃 + 4𝛾)∕𝜆 −(𝜃 + 2𝛾)∕𝜆
0 ⋯ 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= 𝐼,

where 𝐼 denotes the 𝑇 × 𝑇 identity matrix. The latter implies lim𝜆→∞ 𝐴−1𝛬 = lim𝜆→∞
(

𝛬−1𝐴
)−1 = 𝐼 . Thus, we obtain

lim
𝜆→∞

𝐴−1𝐸 = lim
𝜆→∞

𝐴−1𝛬𝛬−1𝐸 =
(

lim
𝜆→∞

𝐴−1𝛬
)(

lim
𝜆→∞

𝛬−1𝐸
)

= 𝐼𝑄 = 𝑄.

So from (3), we deduce

lim
𝜆→∞

𝑀 = 𝜃
(

lim
𝜆→∞

𝐴−1𝐸
)

+ 𝜃
(

lim
𝜆→∞

𝐴−1𝐸
)⊤

+ 𝛾
(

𝐹 lim
𝜆→∞

𝐴−1𝐸
)

+ 𝛾
(

𝐹 lim
𝜆→∞

𝐴−1𝐸
)⊤

= 𝜃𝑄 + 𝜃𝑄⊤ + 𝛾𝐹𝑄 + 𝛾(𝐹𝑄)⊤ = 𝜃𝑄 + 𝜃𝑄⊤ + 2𝛾𝐼 =

⎛

⎜

⎜

⎜

⎜

⎝

2𝜃 + 2𝛾 𝜃 ⋯ 𝜃
𝜃 2𝜃 + 2𝛾 ⋯ 𝜃
⋮ ⋱ ⋮
𝜃 𝜃 ⋯ 2𝜃 + 2𝛾

⎞

⎟

⎟

⎟

⎟

⎠

.

Thus,
(

lim𝜆→∞ 𝑀
)

1 = [2𝛾 + 𝜃(𝑇 + 1)]1, which implies that

lim
𝜆→∞

𝑀−11 = 1
2𝛾 + 𝜃(𝑇 + 1)

(

lim
𝜆→∞

𝑀−1
)(

lim
𝜆→∞

𝑀
)

1 = 1
2𝛾 + 𝜃(𝑇 + 1)

(

lim
𝜆→∞

𝑀−1𝑀
)

1 = 1
2𝛾 + 𝜃(𝑇 + 1)

1,

nd hence lim𝜆→∞ 1⊤𝑀−11 = 𝑇
2𝛾+𝜃(𝑇+1) . We can then compute

lim
𝜆→∞

𝝉∗ = lim
𝜆→∞

( 1
1⊤𝑀−11

𝑀−11
)

= 1
lim𝜆→∞ 1⊤𝑀−11

lim
𝜆→∞

𝑀−11 =
2𝛾 + 𝜃(𝑇 + 1)

𝑇
1

2𝛾 + 𝜃(𝑇 + 1)
1 = 1

𝑇
1,

lim
𝜆→∞

𝒙∗ = lim
𝜆→∞

𝐹𝐴−1𝐸𝝉∗ = 𝐹
(

lim
𝜆→∞

𝐴−1𝐸
)(

lim
𝜆→∞

𝝉∗
)

= 𝐹𝑄
( 1
𝑇
1
)

= 𝐼
( 1
𝑇
1
)

= 1
𝑇
1,

each of which is as claimed. Finally, the client’s expected costs of execution converge to

lim
𝜆→∞

(

𝑝0 +
1

21⊤𝑀−11

)

= 𝑝0 +
1
2
2𝛾 + 𝜃(𝑇 + 1)

𝑇
= 𝑝0 +

𝛾
𝑇

+
𝜃(𝑇 + 1)

2𝑇
,

which is also as claimed. □

Proof of Corollary 9. Define the 𝑇 × 𝑇 anti-diagonal matrix

𝑃 =

⎛

⎜

⎜

⎜

⎜

⎝

0 ⋯ 0 1
0 ⋯ 1 0

⋱ ⋮
1 0 ⋯ 0

⎞

⎟

⎟

⎟

⎟

⎠

,

nd we begin by showing that 𝐴(𝜃𝐼 + 𝛾𝐹 )−1𝑃𝐸⊤ is symmetric. To that end, define 𝑇 × 𝑇 matrices

𝐴1 =

⎛

⎜

⎜

⎜

⎜

⎝

1 0 ⋯ 0
0 1 0
⋮ ⋱ ⋮
0 0 ⋯ 0

⎞

⎟

⎟

⎟

⎟

⎠

, 𝐴2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 ⋯ 0
1 0 1 ⋮
0 1 0 ⋱ 0
⋮ ⋱ ⋱ 1
0 ⋯ 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, 𝐴3 =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 ⋯ 0
0 0 0
⋮ ⋱
0 0 ⋯ 1

⎞

⎟

⎟

⎟

⎟

⎠

,

o that 𝐴 = (𝜆 + 2𝜃 + 4𝛾)𝐴1 − (𝜃 + 2𝛾)𝐴2 + 𝐴3. Define also the 𝑇 × 𝑇 matrices

𝐸1 =

⎛

⎜

⎜

⎜

⎜

⎝

1 0 ⋯ 0
0 1 0
⋮ ⋱
0 0 ⋯ 0

⎞

⎟

⎟

⎟

⎟

⎠

, 𝐸2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 ⋯ 0
1 0 ⋮
0 1 ⋱ 0
⋮ ⋱ 0
0 0 ⋯ 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, 𝐸3 =

⎛

⎜

⎜

⎜

⎜

⎝

0 1 1 ⋯ 0
0 0 1 0
⋮ ⋱ ⋱ ⋮
0 ⋯ ⋯ ⋯ 0

⎞

⎟

⎟

⎟

⎟

⎠

, 𝐸4 =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 ⋯ 1
0 0 1
⋮ ⋱ ⋮
0 0 ⋯ 1

⎞

⎟

⎟

⎟

⎟

⎠

,

o that 𝐸⊤ = (𝜆 + 𝛾 + 𝜃)𝐸1 − 𝛾𝐸2 + 𝜆𝐸3 + 𝐸4. Observe that we can also write

(𝜃𝐼 + 𝛾𝐹 )−1𝑃 =

⎛

⎜

⎜

⎜

⎜

0 ⋯ 0 𝑏1
0 𝑏1 𝑏2

⋱ ⋮

⎞

⎟

⎟

⎟

⎟

,

22
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where 𝑏𝑡+1 = 𝛾∕(𝛾 + 𝜃)𝑏𝑡 for all 𝑡 ∈ {1, 2… , 𝑇 − 1}.31 Each of the following matrices is symmetric:

𝐴1(𝜃𝐼 + 𝛾𝐹 )−1𝑃𝐸1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 ⋯ 0 0
0 0 ⋯ 𝑏1 0
⋮ ⋱ ⋮ ⋮
0 𝑏1 ⋯ 𝑏𝑇−2 0
0 0 ⋯ 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝐴1(𝜃𝐼 + 𝛾𝐹 )−1𝑃𝐸2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 ⋯ 0 𝑏1 0
0 ⋯ 𝑏1 𝑏2 0
⋮ ⋱ ⋮ ⋮
𝑏1 𝑏2 ⋯ 𝑏𝑇−1 0
0 0 ⋯ 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝐴1(𝜃𝐼 + 𝛾𝐹 )−1𝑃𝐸3 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 ⋯ 0 0
0 0 0 ⋯ 0 0
0 0 𝑏1 ⋯ 0 0
⋮ ⋱ ⋮
0 0 0 ⋯

∑𝑇−3
𝑡=1 𝑏𝑡 0

0 0 0 ⋯ 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝐴2(𝜃𝐼 + 𝛾𝐹 )−1𝑃𝐸1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 ⋯ 0 𝑏1 0
0 ⋯ 𝑏1 𝑏2 0
0 ⋯ 𝑏2 𝑏1 + 𝑏3 0
0 ⋯ 𝑏1 + 𝑏3 𝑏2 + 𝑏4 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋮ ⋮
𝑏1 𝑏2 𝑏1 + 𝑏3 𝑏2 + 𝑏4 ⋯ 𝑏𝑇−3 + 𝑏𝑇−1 0
0 0 0 0 ⋯ 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝐴2(𝜃𝐼 + 𝛾𝐹 )−1𝑃𝐸2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 ⋯ 0 𝑏1 𝑏2 0
0 𝑏1 𝑏2 𝑏1 + 𝑏3 0
0 ⋱ 𝑏2 𝑏1 + 𝑏3 𝑏2 + 𝑏4 0
𝑏1 ⋱ ⋱ ⋱ ⋮ ⋮
𝑏2 𝑏1 + 𝑏3 𝑏2 + 𝑏4 ⋯ 𝑏𝑇−2 + 𝑏𝑇 0
0 0 0 ⋯ 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝐴2(𝜃𝐼 + 𝛾𝐹 )−1𝑃𝐸3 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 ⋯ 0 0
0 0 ⋯ 𝑏1 0
⋮ ⋱ ⋮ ⋮
0 𝑏1 ⋯

∑𝑇−2
𝑡=1 𝑏𝑡 0

0 0 ⋯ 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝐴3(𝜃𝐼 + 𝛾𝐹 )−1𝑃𝐸4 =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 ⋯ 0
0 0 0
⋮ ⋱ ⋮
0 0 ⋯

∑𝑇
𝑡=1 𝑏𝑡

⎞

⎟

⎟

⎟

⎟

⎠

To show that 𝐴(𝜃𝐼 + 𝛾𝐹 )−1𝑃𝐸⊤ is indeed symmetric, it only remains to show that [(𝜆 + 2𝜃 + 4𝛾)𝐴1 − (𝜃 + 2𝛾)𝐴2](𝜃𝐼 + 𝛾𝐹 )−1𝑃𝐸4 is the transpose
of 𝐴3(𝜃𝐼 + 𝛾𝐹 )−1𝑃 [(𝜆 + 𝛾 + 𝜃)𝐸1 − 𝛾𝐸2 + 𝜆𝐸3]. The former has nonzero entries only in the first 𝑇 − 1 entries of its last column, while the
latter has nonzero entries only in the first 𝑇 − 1 entries of its last row. We check these nonzero entries. For 𝑡 < 𝑇 , the (𝑡, 𝑇 )-element of
[(𝜆 + 2𝜃 + 4𝛾)𝐴1 − (𝜃 + 2𝛾)𝐴2](𝜃𝐼 + 𝛾𝐹 )−1𝑃𝐸4 is

(𝜆 + 2𝜃 + 4𝛾)
𝑡

∑

𝑠=1
𝑏𝑠 − (𝜃 + 2𝛾)

[ 𝑡+1
∑

𝑠=1
𝑏𝑠 +

𝑡−1
∑

𝑠=1
𝑏𝑠

]

= −(𝜃 + 2𝛾)𝑏𝑡+1 + (𝜆 + 𝜃 + 2𝛾)𝑏𝑡 + 𝜆
𝑡−1
∑

𝑠=1
𝑏𝑠.

For 𝑡 < 𝑇 , the (𝑇 , 𝑡)-element of 𝐴3(𝜃𝐼 + 𝛾𝐹 )−1𝑃 [(𝜆 + 𝛾 + 𝜃)𝐸1 − 𝛾𝐸2 + 𝜆𝐸3] is

(𝜆 + 𝛾 + 𝜃)𝑏𝑡 − 𝛾𝑏𝑡+1 + 𝜆
𝑡−1
∑

𝑠=1
𝑏𝑠.

Computing the difference:
[

(𝜆 + 𝛾 + 𝜃)𝑏𝑡 − 𝛾𝑏𝑡+1 + 𝜆
𝑡−1
∑

𝑠=1
𝑏𝑠

]

−

[

−(𝜃 + 2𝛾)𝑏𝑡+1 + (𝜆 + 𝜃 + 2𝛾)𝑏𝑡 + 𝜆
𝑡−1
∑

𝑠=1
𝑏𝑠

]

= (𝜃 + 𝛾)𝑏𝑡+1 − 𝛾𝑏𝑡,

which equals zero because 𝑏𝑡+1 = 𝛾∕(𝛾 + 𝜃)𝑏𝑡. We conclude that 𝐴(𝜃𝐼 + 𝛾𝐹 )−1𝑃𝐸⊤ is symmetric, as claimed. Mathematically,

𝐴(𝜃𝐼 + 𝛾𝐹 )−1𝑃𝐸⊤ = 𝐸𝑃⊤(𝜃𝐼⊤ + 𝛾𝐹⊤)−1𝐴⊤ = 𝐸𝑃 (𝜃𝐼 + 𝛾𝐹⊤)−1𝐴⊤,

which implies

𝑃𝐸⊤(𝐴−1)⊤(𝜃𝐼 + 𝛾𝐹⊤) = (𝜃𝐼 + 𝛾𝐹 )𝐴−1𝐸𝑃 .

31 We also have 𝑏 = 1∕(𝛾 + 𝜃), although that will not be relevant for the following arguments.
23
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(

w

h

P
a

f

T

A

Letting 𝑀1 = (𝜃𝐼 + 𝛾𝐹 )𝐴−1𝐸, we can rewrite this as 𝑀1𝑃 = 𝑃𝑀⊤
1 . Because 𝑃−1 = 𝑃 , we also have 𝑃𝑀1 = 𝑀⊤

1 𝑃 . Together, these imply
𝑀1 +𝑀⊤

1
)

𝑃 = 𝑃
(

𝑀1 +𝑀⊤
1
)

. Then using 𝑀 = 𝑀1 +𝑀⊤
1 , we conclude 𝑀𝑃 = 𝑃𝑀 , hence 𝑀𝑃𝑀−11 = 1, and hence 𝑃𝑀−11 = 𝑀−11. Therefore,

e conclude

𝑃 𝝉∗ = 1
1⊤𝑀−11

𝑃𝑀−11 = 1
1⊤𝑀−11

𝑀−11 = 𝝉∗,

ence 𝜏𝑗 = 𝜏𝑇+1−𝑗 for all 𝑗 = 1,… , 𝑇 . □

roof of Proposition 10. Throughout, we assume 𝜃 > 0 since the results for 𝜃 = 0 follow from Corollary 7(ii), whose proof does not require
ssuming 𝜆 = 0. We note that a model with price-shock variance 𝜎2𝑘 = 𝑇𝜎2

𝑇𝑘
is equivalent to a model with price-shock variance normalized to 1 while

𝜆 is replaced by 𝜆𝑇𝜎2

𝑇𝑘
. Therefore, (A.7) becomes

𝑋𝑘
𝑞 +

𝜃 + 2𝛾
𝜆𝑇 𝜎2

2𝑋𝑘
𝑞 −𝑋𝑘

𝑞+ 1
𝑇𝑘

−𝑋𝑘
𝑞− 1

𝑇𝑘

1∕𝑇𝑘
=

𝛾
𝜆𝑇 𝜎2

2𝑉 𝑘
𝑞 − 𝑉 𝑘

𝑞+ 1
𝑇𝑘

− 𝑉 𝑘
𝑞− 1

𝑇𝑘

1∕𝑇𝑘
+ 𝜃

𝜆𝑇𝜎2

𝑉 𝑘
𝑞 − 𝑉 𝑘

𝑞− 1
𝑇𝑘

1∕𝑇𝑘
+ 𝑉 𝑘

𝑞 (A.11)

or all 𝑞 ∈ (0, 1), where 𝑋𝑘
𝑞 =

∑
⌈𝑞𝑇𝑘⌉
𝑡=1 𝑥𝑘𝑡 and 𝑉 𝑘

𝑞 =
∑

⌈𝑞𝑇𝑘⌉
𝑡=1 𝜏𝑘𝑡 for 𝝉𝑘 ∈ 𝛥𝑇𝑘 and a dealer strategy 𝒙𝑘 in the 𝑘th model. Throughout this analysis, we

assume that the limiting processes 𝑋𝑞 = lim𝑘→∞ 𝑋𝑘
𝑞 and 𝑉𝑞 = lim𝑘→∞ 𝑉 𝑘

𝑞 exist and are continuously differentiable, except for jumps at 0 and 1.
Thus, given any 𝑞 ∈ (0, 1),

lim
𝑘→∞

𝑉 𝑘
𝑞 − 𝑉 𝑘

𝑞− 1
𝑇𝑘

1∕𝑇𝑘
= lim

𝜖→0

𝑉𝑞 − 𝑉𝑞−𝜖
𝜖

= �̇�𝑞

lim
𝑘→∞

2𝑉 𝑘
𝑞 − 𝑉 𝑘

𝑞+ 1
𝑇𝑘

− 𝑉 𝑘
𝑞− 1

𝑇𝑘

1∕𝑇𝑘
= lim

𝜖→0

(𝑉𝑞 − 𝑉𝑞−𝜖
𝜖

−
𝑉𝑞+𝜖 − 𝑉𝑞

𝜖

)

= �̇�𝑞 − �̇�𝑞 = 0,

lim
𝑘→∞

2𝑋𝑘
𝑞 −𝑋𝑘

𝑞+ 1
𝑇𝑘

−𝑋𝑘
𝑞− 1

𝑇𝑘

1∕𝑇𝑘
= lim

𝜖→0

−(𝑋𝑞+𝜖 −𝑋𝑞) + (𝑋𝑞 −𝑋𝑞−𝜖)
𝜖

= −�̇�𝑞 + �̇�𝑞 = 0.

hus, it follows from (A.11) that

𝑋𝑞 =
𝜃

𝜆𝑇𝜎2
�̇�𝑞 + 𝑉𝑞 (A.12)

for all 𝑞 ∈ (0, 1). Furthermore, the jumps of 𝑉𝑞 at 0 and 1 are given by

𝑉0+ = lim
𝑞↘0

𝑉𝑞 = lim
𝑘→∞

𝑆𝑘
∑

𝑡=1
𝜏𝑘𝑡 = lim

𝑘→∞

𝑆𝑘
∑

𝑡=1

(

𝑉 𝑘
𝑡
𝑇𝑘

− 𝑉 𝑘
𝑡−1
𝑇𝑘

)

,

𝑉1 − 𝑉1− = 𝑉1 − lim
𝑞↗1

𝑉𝑞 = lim
𝑘→∞

𝑆𝑘
∑

𝑡=1
𝜏𝑘𝑇𝑘−(𝑡−1) = lim

𝑘→∞

𝑆𝑘
∑

𝑡=1

(

𝑉 𝑘
1− 𝑡−1

𝑇𝑘

− 𝑉 𝑘
1− 𝑡

𝑇𝑘

)

,

where 𝑆𝑘 is a sequence chosen so that both 𝑆𝑘 → ∞ and 𝑆3
𝑘∕𝑇𝑘 → 0. From (A.11), it follows that

2𝑋𝑘
1
𝑇𝑘

−𝑋𝑘
2
𝑇𝑘

=
𝛾

𝜃 + 2𝛾

(

2𝑉 𝑘
1
𝑇𝑘

− 𝑉 𝑘
2
𝑇𝑘

)

+ 𝜃
𝜃 + 2𝛾

𝑉 𝑘
1
𝑇𝑘

+ 𝑂
(

1
𝑇𝑘

)

,

2𝑋𝑘
𝑡
𝑇𝑘

−𝑋𝑘
𝑡+1
𝑇𝑘

−𝑋𝑘
𝑡−1
𝑇𝑘

=
𝛾

𝜃 + 2𝛾

(

2𝑉 𝑘
𝑡
𝑇𝑘

− 𝑉 𝑘
𝑡+1
𝑇𝑘

− 𝑉 𝑘
𝑡−1
𝑇𝑘

)

+ 𝜃
𝜃 + 2𝛾

(

𝑉 𝑘
𝑡
𝑇𝑘

− 𝑉 𝑘
𝑡−1
𝑇𝑘

)

+ 𝑂
(

1
𝑇𝑘

)

,

where 𝑎𝑘 = 𝑏𝑘 + 𝑂
( 1
𝑇𝑘

)

means lim sup𝑘→∞
|𝑎𝑘−𝑏𝑘|
1∕𝑇𝑘

< ∞, and thus

𝑥𝑘1 − 𝑥𝑘2 =
𝛾

𝜃 + 2𝛾
(

𝜏𝑘1 − 𝜏𝑘2
)

+ 𝜃
𝜃 + 2𝛾

𝜏𝑘1 + 𝑂
(

1
𝑇𝑘

)

,

𝑥𝑘𝑡 − 𝑥𝑘𝑡+1 =
𝛾

𝜃 + 2𝛾
(

𝜏𝑘𝑡 − 𝜏𝑘𝑡+1
)

+ 𝜃
𝜃 + 2𝛾

𝜏𝑘𝑡 + 𝑂
(

1
𝑇𝑘

)

.

ssuming 𝑥𝑘𝑆𝑘
= 𝑂

( 1
𝑇𝑘

)

and 𝜏𝑘𝑆𝑘
= 𝑂

( 1
𝑇𝑘

)

, we obtain

𝑥𝑘𝑡 = 𝑥𝑘𝑡+1 +
𝛾

𝜃 + 2𝛾
(

𝜏𝑘𝑡 − 𝜏𝑘𝑡+1
)

+ 𝜃
𝜃 + 2𝛾

𝜏𝑘𝑡 + 𝑂
(

1
𝑇𝑘

)

=
𝛾

𝜃 + 2𝛾

𝑆𝑘
∑

𝑗=𝑡

(

𝜏𝑘𝑗 − 𝜏𝑘𝑗+1
)

+ 𝜃
𝜃 + 2𝛾

𝑆𝑘
∑

𝑗=𝑡
𝜏𝑘𝑗 + 𝑂

(

𝑆𝑘
𝑇𝑘

)

=
𝛾

𝜃 + 2𝛾
𝜏𝑘𝑡 + 𝜃

𝜃 + 2𝛾

𝑆𝑘
∑

𝑗=𝑡
𝜏𝑘𝑗 + 𝑂

(

𝑆𝑘
𝑇𝑘

)

, (A.13)

and likewise if 𝑥𝑘𝑇𝑘−𝑆𝑘
= 𝑂

( 1
𝑇𝑘

)

and 𝜏𝑘𝑇𝑘−𝑆𝑘
= 𝑂

( 1
𝑇𝑘

)

,

𝑥𝑘 = 𝑥𝑘 −
𝛾 (

𝜏𝑘 − 𝜏𝑘
)

− 𝜃 𝜏𝑘 + 𝑂
(

1
)

24

𝑇𝑘−𝑡 𝑇𝑘−(𝑡+1) 𝜃 + 2𝛾 𝑇𝑘−(𝑡+1) 𝑇𝑘−𝑡 𝜃 + 2𝛾 𝑇𝑘−(𝑡+1) 𝑇𝑘
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W

T

= −
𝛾

𝜃 + 2𝛾

𝑆𝑘
∑

𝑗=𝑡

(

𝜏𝑘𝑇𝑘−(𝑗+1) − 𝜏𝑘𝑇𝑘−𝑗
)

− 𝜃
𝜃 + 2𝛾

𝑆𝑘
∑

𝑗=𝑡+1
𝜏𝑘𝑇𝑘−𝑗 + 𝑂

(

𝑆𝑘
𝑇𝑘

)

=
𝛾

𝜃 + 2𝛾
𝜏𝑘𝑇𝑘−𝑡 −

𝜃
𝜃 + 2𝛾

𝑆𝑘
∑

𝑗=𝑡+1
𝜏𝑘𝑇𝑘−𝑗 + 𝑂

(

𝑆𝑘
𝑇𝑘

)

. (A.14)

Therefore, the expected costs for the client are

E[𝝉𝑘 ⋅ 𝒑] = 𝑝0 + 𝜃
𝑇𝑘
∑

𝑡=1
𝑋𝑘

𝑡
𝑇𝑘

(

𝑉 𝑘
𝑡
𝑇𝑘

− 𝑉 𝑘
𝑡−1
𝑇𝑘

)

+ 𝛾
𝑇𝑘
∑

𝑡=1

(

𝑋𝑘
𝑡
𝑇𝑘

−𝑋𝑘
𝑡−1
𝑇𝑘

)(

𝑉 𝑘
𝑡
𝑇𝑘

− 𝑉 𝑘
𝑡−1
𝑇𝑘

)

= 𝑝0 + 𝜃 ∫

1

0
𝑋𝑞 𝑑𝑉𝑞 + 𝜃

𝑆𝑘
∑

𝑡=1
𝑋𝑘

𝑡
𝑇𝑘

𝜏𝑘𝑡 + 𝛾
𝑆𝑘
∑

𝑡=1
𝑥𝑘𝑡 𝜏

𝑘
𝑡 + 𝜃

𝑆𝑘
∑

𝑡=1
𝑋𝑘

1− 𝑡−1
𝑇𝑘

𝜏𝑘𝑇𝑘−(𝑡−1) + 𝛾
𝑆𝑘
∑

𝑡=1
𝑥𝑘𝑇𝑘−(𝑡−1)𝜏

𝑘
𝑇𝑘−(𝑡−1)

+ 𝑂
(

1
𝑇𝑘

)

. (A.15)

We next analyze each of the following three terms:

1. 𝜃 ∫ 1
0 𝑋𝑞 𝑑𝑉𝑞 ,

2. 𝜃
∑𝑆𝑘

𝑡=1 𝑋
𝑘
𝑡
𝑇𝑘

𝜏𝑘𝑡 + 𝛾
∑𝑆𝑘

𝑡=1 𝑥
𝑘
𝑡 𝜏

𝑘
𝑡 ,

3. 𝜃
∑𝑆𝑘

𝑡=1 𝑋
𝑘
1− 𝑡−1

𝑇𝑘

𝜏𝑘𝑇𝑘−(𝑡−1) + 𝛾
∑𝑆𝑘

𝑡=1 𝑥
𝑘
𝑇𝑘−(𝑡−1)

𝜏𝑘𝑇𝑘−(𝑡−1).

For the first term, we use (A.12) to write

∫

1

0
𝑋𝑞 𝑑𝑉𝑞 = ∫

1

0

(

𝜃
𝜆𝑇𝜎2

�̇�𝑞 + 𝑉𝑞

)

�̇�𝑞 𝑑𝑞 = 𝜃
𝜆𝑇𝜎2 ∫

1

0
�̇� 2
𝑞 𝑑𝑞 + 1

2
𝑉 2
1− − 1

2
𝑉 2
0+, (A.16)

where the second equality is implied by

∫

1

0
𝑉𝑞 �̇�𝑞 𝑑𝑞 = 1

2
𝑉 2
1− − 1

2
𝑉 2
0+,

which in turn follows from integration by parts

∫

1

0
𝑉𝑞 �̇�𝑞 𝑑𝑞 = 𝑉 2

1− − 𝑉 2
0+ − ∫

1

0
�̇�𝑞𝑉𝑞 𝑑𝑞.

Set 𝑎 = 𝑉1− − 𝑉0+. By Corollary 9, optimal contract weights are symmetric, so we have 𝑉0+ = 1 − 𝑉1− = (1 − 𝑎)∕2. Moreover, the minimizer of
∫ 1
0 �̇� 2

𝑞 𝑑𝑞 subject to 𝑎 = 𝑉1− − 𝑉0+ is �̇�𝑞 = 𝑎 almost everywhere on (0, 1) by Jensen’s inequality. Therefore, (A.16) in the optimum becomes

∫

1

0
𝑋𝑞 𝑑𝑉𝑞 =

𝜃
𝜆𝑇𝜎2 ∫

1

0
�̇� 2
𝑞 𝑑𝑞 + 1

2
𝑉 2
1− − 1

2
𝑉 2
0+ = 𝜃2

𝜆𝑇𝜎2
𝑎2 +

𝜃(1 + 𝑎)2

8
−

𝜃(1 − 𝑎)2

8
. (A.17)

Using 𝑉0+ = 1 − 𝑉1− = (1 − 𝑎)∕2, we also have
𝑆𝑘
∑

𝑡=1
𝜏𝑘𝑡 = 1 − 𝑎

2
+ 𝑂

(

1
𝑇𝑘

)

,
𝑆𝑘
∑

𝑡=1
𝜏𝑘𝑇𝑘−(𝑡−1) =

1 − 𝑎
2

+ 𝑂
(

1
𝑇𝑘

)

.

Next, we analyze the minimization of

𝜃
𝑆𝑘
∑

𝑡=1
𝑋𝑘

𝑡
𝑇𝑘

𝜏𝑘𝑡 + 𝛾
𝑆𝑘
∑

𝑡=1
𝑥𝑘𝑡 𝜏

𝑘
𝑡 . (A.18)

subject to ∑𝑆𝑘
𝑡=1 𝜏

𝑘
𝑡 = 1−𝑎

2 . Using (A.13), we write

𝜃
𝑆𝑘
∑

𝑡=1
𝑋𝑘

𝑡
𝑇𝑘

𝜏𝑘𝑡 + 𝛾
𝑆𝑘
∑

𝑡=1
𝑥𝑘𝑡 𝜏

𝑘
𝑡 = 𝜃

𝑆𝑘
∑

𝑡=1

𝑡
∑

𝓁=1

(

𝛾
𝜃 + 2𝛾

𝜏𝑘𝓁 + 𝜃
𝜃 + 2𝛾

𝑆𝑘
∑

𝑗=𝓁
𝜏𝑘𝑗

)

𝜏𝑘𝑡 + 𝛾
𝑆𝑘
∑

𝑡=1

(

𝛾
𝜃 + 2𝛾

𝜏𝑘𝑡 + 𝜃
𝜃 + 2𝛾

𝑆𝑘
∑

𝑗=𝑡
𝜏𝑘𝑗

)

𝜏𝑘𝑡 + 𝑂
(𝑆3

𝑘
𝑇𝑘

)

= 𝜃
𝑆𝑘
∑

𝑡=1

(

𝛾
𝜃 + 2𝛾

𝑡
∑

𝓁=1
𝜏𝑘𝓁 + 𝜃

𝜃 + 2𝛾

𝑆𝑘
∑

𝑗=1
min{𝑗, 𝑡}𝜏𝑘𝑗

)

𝜏𝑘𝑡 + 𝛾
𝑆𝑘
∑

𝑡=1

(

𝛾
𝜃 + 2𝛾

𝜏𝑘𝑡 + 𝜃
𝜃 + 2𝛾

𝑆𝑘
∑

𝑗=𝑡
𝜏𝑘𝑗

)

𝜏𝑘𝑡 + 𝑂
(𝑆3

𝑘
𝑇𝑘

)

.

e can simplify two terms

𝜃
𝑆𝑘
∑

𝑡=1

𝛾
𝜃 + 2𝛾

𝑡
∑

𝓁=1
𝜏𝑘𝓁𝜏

𝑘
𝑡 + 𝛾

𝑆𝑘
∑

𝑡=1

𝜃
𝜃 + 2𝛾

𝑆𝑘
∑

𝑗=𝑡
𝜏𝑘𝑗 𝜏

𝑘
𝑡 =

𝜃𝛾
𝜃 + 2𝛾

𝑆𝑘
∑

𝑡=1

𝑆𝑘
∑

𝓁=1
𝜏𝑘𝓁𝜏

𝑘
𝑡 +

𝜃𝛾
𝜃 + 2𝛾

𝑆𝑘
∑

𝑡=1

(

𝜏𝑘𝑡
)2

=
𝜃𝛾

𝜃 + 2𝛾

𝑆𝑘
∑

𝑡=1

1 − 𝑎
2

𝜏𝑘𝑡 +
𝜃𝛾

𝜃 + 2𝛾

𝑆𝑘
∑

𝑡=1

(

𝜏𝑘𝑡
)2

=
𝜃𝛾

𝜃 + 2𝛾
(1 − 𝑎)2

4
+

𝜃𝛾
𝜃 + 2𝛾

𝑆𝑘
∑

𝑡=1

(

𝜏𝑘𝑡
)2.

herefore, the optimization problem (A.18) becomes

𝜃𝛾
𝜃 + 2𝛾

(1 − 𝑎)2

4
+ 𝜃2

𝜃 + 2𝛾

𝑆𝑘
∑

𝜏𝑘𝑡

𝑆𝑘
∑

min{𝑗, 𝑡}𝜏𝑘𝑗 +
𝜃𝛾 + 𝛾2

𝜃 + 2𝛾

𝑆𝑘
∑

(

𝜏𝑘𝑡
)2
25

𝑡=1 𝑗=1 𝑡=1
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w

w

subject to ∑𝑆𝑘
𝑡=1 𝜏

𝑘
𝑡 = 1−𝑎

2 . The first-order condition from the Lagrange multiplier method implies

0 = 𝜕
𝜕𝜏𝑘𝑠

(

𝜃2
𝑆𝑘
∑

𝑡=1
𝜏𝑘𝑡

𝑆𝑘
∑

𝑗=1
min{𝑗, 𝑡}𝜏𝑘𝑗 + (𝜃𝛾 + 𝛾2)

𝑆𝑘
∑

𝑡=1

(

𝜏𝑘𝑡
)2
)

+ 𝜆1

= 𝜃2
𝑆𝑘
∑

𝑗=1
min{𝑗, 𝑠}𝜏𝑘𝑗 + 𝜃2

𝑆𝑘
∑

𝑡=1
𝜏𝑘𝑡 min{𝑠, 𝑡} + 2(𝜃𝛾 + 𝛾2)𝜏𝑘𝑠 + 𝜆1

= 2𝜃2
𝑆𝑘
∑

𝑗=1
min{𝑗, 𝑠}𝜏𝑘𝑗 + 2(𝜃𝛾 + 𝛾2)𝜏𝑘𝑠 + 𝜆1 (A.19)

or all 𝑠 = 1, 2,… Specifically, for 𝛾 = 0, this implies with 𝑠 = 1 that 𝜆1 = −𝜃2(1 − 𝑎); with 𝑠 = 2 that 𝜆1 = −𝜃2(1 − 𝑎) −
∑𝑆𝑘

𝑗=2 𝜏𝑗 , implying ∑𝑆𝑘
𝑗=2 𝜏𝑗 ; and

teratively comparing different 𝑠, we obtain 𝜏𝑘1 = 1−𝑎
2 and 𝜏𝑘𝑗 = 0 for all 𝑗 > 1. For 𝛾 > 0, we deduce

0 = 2𝜃2
𝑆𝑘
∑

𝑗=1

(

min{𝑗, 𝑠 + 1} − min{𝑗, 𝑠}
)

𝜏𝑘𝑗 + 2(𝜃𝛾 + 𝛾2)
(

𝜏𝑘𝑠+1 − 𝜏𝑘𝑠
)

= 2𝜃2
𝑆𝑘
∑

𝑗=𝑠+1
𝜏𝑘𝑗 + 2(𝜃𝛾 + 𝛾2)

(

𝜏𝑘𝑠+1 − 𝜏𝑘𝑠
)

= 2𝜃2
(

1 − 𝑎
2

−
𝑠
∑

𝑗=1
𝜏𝑘𝑗

)

+ 2(𝜃𝛾 + 𝛾2)
(

𝜏𝑘𝑠+1 − 𝜏𝑘𝑠
)

for all 𝑠 = 1, 2,…, so that

𝜏𝑘𝑠+1 = 𝜏𝑘𝑠 − 𝜃2

𝛾𝜃 + 𝛾2

(

1 − 𝑎
2

−
𝑠
∑

𝑗=1
𝜏𝑘𝑗

)

, 𝑠 = 1, 2,…

Its solution is

𝜏𝑘𝑗 =
𝜃𝛾𝑗−1

(𝜃 + 𝛾)𝑗
1 − 𝑎
2

, 𝑗 = 1, 2,… , (A.20)

hich satisfies
𝑠
∑

𝑗=1
𝜏𝑘𝑗 =

𝑠
∑

𝑗=1

𝜃𝛾𝑗−1

(𝜃 + 𝛾)𝑗
1 − 𝑎
2

= 𝜃
𝜃 + 𝛾

1 − 𝛾𝑠

(𝜃+𝛾)𝑠

1 − 𝛾
𝜃+𝛾

1 − 𝑎
2

𝑠→∞
→

1 − 𝑎
2

.

We also note that it follows from (A.13), (A.14), and (A.20) that

𝑥𝑘𝑡 =
𝛾

𝜃 + 2𝛾
𝜏𝑘𝑡 + 𝜃

𝜃 + 2𝛾

𝑆𝑘
∑

𝑗=𝑡
𝜏𝑘𝑗 + 𝑂

(

𝑆𝑘
𝑇𝑘

)

=
𝛾

𝜃 + 2𝛾
𝜃𝛾 𝑡−1

(𝜃 + 𝛾)𝑡
1 − 𝑎
2

+ 𝜃
𝜃 + 2𝛾

𝑆𝑘
∑

𝑗=𝑡

𝜃𝛾𝑗−1

(𝜃 + 𝛾)𝑗
1 − 𝑎
2

+ 𝑂
(

𝑆𝑘
𝑇𝑘

)

=
𝛾

𝜃 + 2𝛾
𝜃𝛾 𝑡−1

(𝜃 + 𝛾)𝑡
1 − 𝑎
2

+ 𝜃
𝜃 + 2𝛾

𝜃𝛾 𝑡−1

(𝜃 + 𝛾)𝑡
1

1 − 𝛾
𝜃+𝛾

1 − 𝑎
2

+ 𝑂
(

𝑆𝑘
𝑇𝑘

)

=
𝜃𝛾 𝑡−1

(𝜃 + 𝛾)𝑡
1 − 𝑎
2

+ 𝑂
(

𝑆𝑘
𝑇𝑘

)

,

𝑥𝑘𝑇𝑘−𝑡 =
𝛾

𝜃 + 2𝛾
𝜏𝑘𝑇𝑘−𝑡 −

𝜃
𝜃 + 2𝛾

𝑆𝑘
∑

𝑗=𝑡+1
𝜏𝑘𝑇𝑘−𝑗 + 𝑂

(

𝑆𝑘
𝑇𝑘

)

=
𝛾

𝜃 + 2𝛾
𝜏𝑘𝑡+1 −

𝜃
𝜃 + 2𝛾

𝑆𝑘
∑

𝑗=𝑡+2
𝜏𝑘𝑗 + 𝑂

(

𝑆𝑘
𝑇𝑘

)

=
𝛾

𝜃 + 2𝛾
𝜃𝛾 𝑡

(𝜃 + 𝛾)𝑡+1
1 − 𝑎
2

− 𝜃
𝜃 + 2𝛾

𝑆𝑘
∑

𝑗=𝑡+2

𝜃𝛾𝑗−1

(𝜃 + 𝛾)𝑗
1 − 𝑎
2

+ 𝑂
(

𝑆𝑘
𝑇𝑘

)

=
𝛾

𝜃 + 2𝛾
𝜃𝛾 𝑡

(𝜃 + 𝛾)𝑡+1
1 − 𝑎
2

− 𝜃
𝜃 + 2𝛾

𝜃𝛾 𝑡+1

(𝜃 + 𝛾)𝑡+2
1

1 − 𝛾
𝜃+𝛾

1 − 𝑎
2

+ 𝑂
(

𝑆𝑘
𝑇𝑘

)

= 𝑂
(

𝑆𝑘
𝑇𝑘

)

. (A.21)

For 𝑠 = 1, (A.19) simplifies to

0 = 2𝜃2
𝑆𝑘
∑

𝑗=1
𝜏𝑘𝑗 + 2(𝜃𝛾 + 𝛾2)𝜏𝑘1 + 𝜆1,

hich implies

𝜆1 = −2𝜃2
𝑆𝑘
∑

𝜏𝑘𝑗 − 2(𝜃𝛾 + 𝛾2)𝜏𝑘1 = −2𝜃2 1 − 𝑎
2

− 2(𝜃𝛾 + 𝛾2) 𝜃
𝜃 + 𝛾

1 − 𝑎
2

= −2(𝜃2 + 𝛾𝜃) 1 − 𝑎
2

.

26

𝑗=1
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s

We also derive from (A.19) that

2𝜃2
𝑆𝑘
∑

𝑗=1
min{𝑗, 𝑡}𝜏𝑘𝑗 = −2(𝜃𝛾 + 𝛾2)𝜏𝑘𝑡 − 𝜆1 = −2(𝜃𝛾 + 𝛾2)𝜏𝑘𝑡 + 2(𝜃2 + 𝛾𝜃) 1 − 𝑎

2
,

hence the optimization problem becomes

𝜃𝛾
𝜃 + 2𝛾

(1 − 𝑎)2

4
+ 𝜃2

𝜃 + 2𝛾

𝑆𝑘
∑

𝑡=1
𝜏𝑘𝑡

𝑆𝑘
∑

𝑗=1
min{𝑗, 𝑡}𝜏𝑘𝑗 +

𝜃𝛾 + 𝛾2

𝜃 + 2𝛾

𝑆𝑘
∑

𝑡=1

(

𝜏𝑘𝑡
)2

=
𝜃𝛾

𝜃 + 2𝛾
(1 − 𝑎)2

4
−

𝜃𝛾 + 𝛾2

𝜃 + 2𝛾

𝑆𝑘
∑

𝑡=1

(

𝜏𝑘𝑡
)2 + 1

𝜃 + 2𝛾

𝑆𝑘
∑

𝑡=1
𝜏𝑘𝑡 (𝜃

2 + 𝛾𝜃) 1 − 𝑎
2

+
𝜃𝛾 + 𝛾2

𝜃 + 2𝛾

𝑆𝑘
∑

𝑡=1

(

𝜏𝑘𝑡
)2

=
𝜃𝛾

𝜃 + 2𝛾
(1 − 𝑎)2

4
+ 1

𝜃 + 2𝛾

𝑆𝑘
∑

𝑡=1
𝜏𝑘𝑡 (𝜃

2 + 𝛾𝜃) 1 − 𝑎
2

=
𝜃𝛾

𝜃 + 2𝛾
(1 − 𝑎)2

4
+

𝜃2 + 𝛾𝜃
𝜃 + 2𝛾

(1 − 𝑎)2

4

= 𝜃
(1 − 𝑎)2

4
. (A.22)

Finally, we analyze the minimization problem

𝜃
𝑆𝑘
∑

𝑡=1
𝑋𝑘

1− 𝑡−1
𝑇𝑘

𝜏𝑘𝑇𝑘−(𝑡−1) + 𝛾
𝑆𝑘
∑

𝑡=1
𝑥𝑘𝑇𝑘−(𝑡−1)𝜏

𝑘
𝑇𝑘−(𝑡−1)

subject to ∑𝑆𝑘
𝑡=1 𝜏

𝑘
𝑇𝑘−(𝑡−1)

= 1−𝑎
2 . However, as per (A.21), the jumps of the trading strategy in the limit disappear so that 𝑥𝑘𝑇𝑘−(𝑡−1) = 𝑂

( 𝑆𝑘
𝑇𝑘

)

and

𝑋𝑘
1− 𝑡−1

𝑇𝑘

= 1 + 𝑂
( 𝑆2

𝑘
𝑇𝑘

)

. Therefore, the value of the minimization problem becomes

𝜃
𝑆𝑘
∑

𝑡=1
𝑋𝑘

1− 𝑡−1
𝑇𝑘

𝜏𝑘𝑇𝑘−(𝑡−1) + 𝛾
𝑆𝑘
∑

𝑡=1
𝑥𝑘𝑇𝑘−(𝑡−1)𝜏

𝑘
𝑇𝑘−(𝑡−1)

= 𝜃
𝑆𝑘
∑

𝑡=1
𝜏𝑘𝑇𝑘−(𝑡−1) + 𝑂

(𝑆3
𝑘

𝑇𝑘

)

= 𝜃 1 − 𝑎
2

+ 𝑂
(𝑆3

𝑘
𝑇𝑘

)

. (A.23)

In summary, using (A.17), (A.22), and (A.23), the expected costs from (A.15) in the optimum are

E[𝝉𝑘 ⋅ 𝒑] = 𝑝0 + 𝜃 ∫

1

0
𝑋𝑞 𝑑𝑉𝑞 + 𝜃

𝑆𝑘
∑

𝑡=1
𝑋𝑘

𝑡
𝑇𝑘

𝜏𝑘𝑡 + 𝛾
𝑆𝑘
∑

𝑡=1
𝑥𝑘𝑡 𝜏

𝑘
𝑡 + 𝜃

𝑆𝑘
∑

𝑡=1
𝑋𝑘

1− 𝑡−1
𝑇𝑘

𝜏𝑘𝑇𝑘−(𝑡−1) + 𝛾
𝑆𝑘
∑

𝑡=1
𝑥𝑘𝑇𝑘−(𝑡−1)𝜏

𝑘
𝑇𝑘−(𝑡−1)

+ 𝑂
(𝑆3

𝑘
𝑇𝑘

)

= 𝑝0 +
𝜃2

𝜆𝑇𝜎2
𝑎2 +

𝜃(1 + 𝑎)2

8
−

𝜃(1 − 𝑎)2

8
+ 𝜃

(1 − 𝑎)2

4
+ 𝜃 1 − 𝑎

2
+ 𝑂

(𝑆3
𝑘

𝑇𝑘

)

= 𝑝0 +
𝜃2

𝜆𝑇𝜎2
𝑎2 + 𝜃

(1 − 𝑎)2

4
+ 𝜃

2
+ 𝑂

(𝑆3
𝑘

𝑇𝑘

)

, (A.24)

minimized over 𝑎. The first-order condition gives

𝜃2

𝜆𝑇𝜎2
2𝑎 − 𝜃 1 − 𝑎

2
= 0

o that

𝑎 =
𝜃
2

𝜃
2 + 2𝜃2

𝜆𝑇𝜎2

= 1
1 + 4𝜃

𝜆𝑇𝜎2

. (A.25)

We conclude for 𝑞 ∈ (0, 1) that

𝑉𝑞 = 𝑉0+ + (𝑉𝑞 − 𝑉0+) =
1 − 𝑎
2

+ 𝑎𝑞,

𝑋𝑞 =
𝜃

𝜆𝑇𝜎2
�̇�𝑞 + 𝑉𝑞 =

𝜃𝑎
𝜆𝑇𝜎2

+ 1 − 𝑎
2

+ 𝑎𝑞,

using (A.12), which implies the formulas for the limits of the optimal contract and dealer’s trading strategy. Thanks to (A.24) and (A.25), the
client’s expected costs converge to

𝑝0 +
𝜃2

𝜆𝑇𝜎2
𝑎2 + 𝜃

(1 − 𝑎)2

4
+ 𝜃

2
= 𝑝0 +

𝜃
4

(

1 + 4𝜃
𝜆𝑇𝜎2

)

𝑎2 − 𝑎
2
𝜃 + 3

4
𝜃 = 𝑝0 +

3 − 𝑎
4

𝜃. □

Proof of Proposition 11. This proof builds on the first half of the proof of Proposition 10.
Claim (i): In the case of a TWAP contract, we have

𝑉 TWAP
𝑞 = lim

𝑘→∞
𝑉 TWAP,𝑘
𝑞 = lim

𝑘→∞

⌈𝑞𝑇𝑘⌉
∑

𝑡=1
𝜏TWAP,𝑘𝑡 = 𝑞

for all 𝑞 ∈ (0, 1) so that (A.12) becomes

𝑋TWAP = 𝜃 �̇� TWAP + 𝑉 TWAP = 𝜃 + 𝑞
27

𝑞 𝜆𝑇𝜎2 𝑞 𝑞 𝜆𝑇𝜎2
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A

R

A
A
A
B
B
B
B
B
B
B

B
B
B
B
B
B
B
B
B
B
C

C
C
C
C
D
D
D
E
F
F
G
G
G
G
G

G

for all 𝑞 ∈ (0, 1). Along with the conditions 𝑋TWAP,𝑘
0 = 0 and 𝑋TWAP,𝑘

1 = 1 for all 𝑘, this shows (7). Because 𝑉 TWAP
𝑞 does not have any jumps, it

follows from (A.15) that the expected costs for the client under a TWAP contract are

lim
𝑘→∞

E[𝝉TWAP,𝑘 ⋅ 𝒑] = 𝑝0 + 𝜃 ∫

1

0
𝑋TWAP

𝑞 𝑑𝑉 TWAP
𝑞 = 𝑝0 + 𝜃 ∫

1

0

(

𝜃
𝜆𝑇𝜎2

+ 𝑞
)

𝑑𝑞 = 𝑝0 +
𝜃2

𝜆𝑇𝜎2
+ 1

2
𝜃.

Claim (ii): In the case of a MOC contract, we have

𝑉 MOC
𝑞 = lim

𝑘→∞
𝑉 MOC ,𝑘
𝑞 = lim

𝑘→∞

⌈𝑞𝑇𝑘⌉
∑

𝑡=1
𝜏MOC ,𝑘𝑡 = 0

or all 𝑞 ∈ (0, 1) so that (A.12) becomes

𝑋MOC
𝑞 = 𝜃

𝜆𝑇𝜎2
�̇� MOC
𝑞 + 𝑉 MOC

𝑞 = 0

or all 𝑞 ∈ (0, 1). Along with the conditions 𝑋MOC
0 = 0 and 𝑋MOC

1 = 1, this shows (8). The expected costs for the client are

E[𝝉MOC ,𝑘 ⋅ 𝒑] = 𝑝0 + 𝜃
𝑇𝑘
∑

𝑡=1
𝑋MOC ,𝑘

𝑡
𝑇𝑘

(

𝑉 MOC ,𝑘
𝑡
𝑇𝑘

− 𝑉 MOC ,𝑘
𝑡−1
𝑇𝑘

)

+ 𝛾
𝑇𝑘
∑

𝑡=1

(

𝑋MOC ,𝑘
𝑡
𝑇𝑘

−𝑋MOC ,𝑘
𝑡−1
𝑇𝑘

)(

𝑉 MOC ,𝑘
𝑡
𝑇𝑘

− 𝑉 MOC ,𝑘
𝑡−1
𝑇𝑘

)

= 𝑝0 + 𝜃𝑋MOC ,𝑘
1 + 𝛾

(

𝑋MOC ,𝑘
1 −𝑋MOC ,𝑘

𝑇𝑘−1
𝑇𝑘

)

= 𝑝0 + 𝜃 +
𝛾2

𝜃 + 2𝛾
+ 𝑂

(

𝑆𝑘
𝑇𝑘

)

,

using that

𝑋MOC ,𝑘
1 −𝑋MOC ,𝑘

𝑇𝑘−1
𝑇𝑘

= 𝑥MOC ,𝑘𝑇𝑘
=

𝛾
𝜃 + 2𝛾

+ 𝑂
(

𝑆𝑘
𝑇𝑘

)

y (A.14). □

ppendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jfineco.2024.103901.

eferences

bel Noser, 2021. Hidden figures–Introducing a portfolio transition & event universe. https://bit.ly/3zE5Lhl.
lmgren, Robert, Chriss, Neil, 2001. Optimal execution of portfolio transactions. J. Risk 3, 5–40.
vramov, Doron, Chordia, Tarun, Goyal, Amit, 2006. The impact of trades on daily volatility. Rev. Financ. Stud. 19 (4), 1241–1277.
aldauf, Markus, Frei, Christoph, Mollner, Joshua, 2022. Principal trading arrangements: When are common contracts optimal? Manage. Sci. 68 (4), 3112–3128.
aldauf, Markus, Mollner, Joshua, 2024. Competition and information leakage. J. Polit. Econ. 132 (5), 1603–1641.
ernhardt, Dan, Taub, Bart, 2008. Front-running dynamics. J. Econom. Theory 138 (1), 288–296.
ertsimas, Dimitris, Lo, Andrew W., 1998. Optimal control of execution costs. J. Financial Mark. 1 (1), 1–50.
hattacharya, Sudipto, Pfleiderer, Paul, 1985. Delegated portfolio management. J. Econom. Theory 36 (1), 1–25.
iais, Bruno, Glosten, Larry, Spatt, Chester, 2005. Market microstructure: A survey of microfoundations, empirical results, and policy implications. J. Financ. Mark. 8 (2), 217–264.
iais, Bruno, Mariotti, Thomas, Plantin, Guillaume, Rochet, Jean-Charles, 2007. Dynamic security design: Convergence to continuous time and asset pricing implications. Rev. Econ.

Stud. 74 (2), 345–390.
loomberg, 2016. Cairn energy said to be victim of HSBC currency frontrunning. https://bloom.bg/3sBA14k.
loomberg, 2019. Barclays trader beats U.S. prosecution of front-running charges. https://bloom.bg/3Dzbcy0.
loomberg, 2020. Hedge funds press for crackdown on front-running loophole in EU. https://bloom.bg/3LrOiul.
loomberg, 2022a. Japan’s SMBC Nikko, staff charged with market manipulation. https://bloom.bg/3F8zRIJ.
loomberg, 2022b. Morgan Stanley’s Passi faces U.S. block-trading probe. https://bloom.bg/3OJQoXL.
loomberg, 2024a. Citadel among hedge funds that got Morgan Stanley’s block-trading leaks. https://bloom.bg/4bBj93z.
loomberg, 2024b. Morgan Stanley to pay $249 million to end block trade probes. https://bloom.bg/44Edqrg.
oard, Simon, Skrzypacz, Andrzej, 2016. Revenue management with forward-looking buyers. J. Polit. Econ. 124 (4), 1046–1087.
olton, Patrick, Dewatripont, Mathias, 2004. Contract Theory. MIT Press.
uffa, Andrea M., Vayanos, Dimitri, Woolley, Paul, 2022. Asset management contracts and equilibrium prices. J. Polit. Econ. 130 (12), 3025–3342.
ampo, Sandra, Guerre, Emmanuel, Perrigne, Isabelle, Vuong, Quang, 2011. Semiparametric estimation of first-price auctions with risk-averse bidders. Rev. Econ. Stud. 78 (1),

112–147.
arpenter, Jennifer N., 2000. Does option compensation increase managerial risk appetite? J. Finance 55 (5), 2311–2331.
artea, Alvaro, Jaimungal, Sebastian, 2016. Incorporating order-flow into optimal execution. Math. Financ. Econ. 10 (3), 339–364.
ox, John C., Ross, Stephen A., Rubinstein, Mark, 1979. Option pricing: A simplified approach. J. Financ. Econ. 7 (3), 229–263.
urello, Gregorio, Sinander, Ludvig, 2024. Screening for breakthroughs. Working Paper, https://arxiv.org/abs/2011.10090.
eMarzo, Peter M., Fishman, Michael J., 2007. Optimal long-term financial contracting. Rev. Financ. Stud. 20 (6), 2079–2128.
i Tella, Sebastian, Sannikov, Yuliy, 2021. Optimal asset management contracts with hidden savings. Econometrica 89 (3), 1099–1139.
uffie, Darrell, Dworczak, Piotr, 2021. Robust benchmark design. J. Financ. Econ. 142 (2), 775–802.
delen, Roger M., Kadlec, Gregory B., 2012. Delegated trading and the speed of adjustment in security prices. J. Financ. Econ. 103 (2), 294–307.
inancial Industry Regulatory Authority, 2013. FINRA rule 5270. Front running of block transactions. https://www.finra.org/rules-guidance/rulebooks/finra-rules/5270.
ishman, Michael J., Longstaff, Francis A., 1992. Dual trading in futures markets. J. Finance 47 (2), 643–671.
ârleanu, Nicolae, Pedersen, Lasse Heje, 2013. Dynamic trading with predictable returns and transaction costs. J. Finance 68 (6), 2309–2340.
ârleanu, Nicolae, Pedersen, Lasse Heje, 2016. Dynamic portfolio choice with frictions. J. Econom. Theory 165, 487–516.
arrett, Daniel F., 2016. Intertemporal price discrimination: Dynamic arrivals and changing values. Amer. Econ. Rev. 106 (11), 3275–3299.
oldman Sachs, 2017. Disclosure regarding FINRA rule 5270. https://www.goldmansachs.com/disclosures/disclosure-regarding-finra-rule-5270.pdf.
renadier, Steven R., Malenko, Andrey, Malenko, Nadya, 2016. Timing decisions in organizations: Communication and authority in a dynamic environment. Amer. Econ. Rev. 106

(9), 2552–2581.
romb, Denis, Vayanos, Dimitri, 2010. Limits of arbitrage. Annu. Rev. Finan. Econ. 2 (1), 251–275.
28

https://doi.org/10.1016/j.jfineco.2024.103901
https://bit.ly/3zE5Lhl
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb2
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb3
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb4
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb5
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb6
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb7
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb8
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb9
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb10
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb10
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb10
https://bloom.bg/3sBA14k
https://bloom.bg/3Dzbcy0
https://bloom.bg/3LrOiul
https://bloom.bg/3F8zRIJ
https://bloom.bg/3OJQoXL
https://bloom.bg/4bBj93z
https://bloom.bg/44Edqrg
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb18
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb19
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb20
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb21
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb21
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb21
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb22
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb23
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb24
https://arxiv.org/abs/2011.10090
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb26
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb27
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb28
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb29
https://www.finra.org/rules-guidance/rulebooks/finra-rules/5270
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb31
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb32
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb33
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb34
https://www.goldmansachs.com/disclosures/disclosure-regarding-finra-rule-5270.pdf
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb36
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb36
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb36
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb37


Journal of Financial Economics 160 (2024) 103901M. Baldauf, C. Frei and J. Mollner
Hellwig, Martin F., Schmidt, Klaus M., 2002. Discrete-time approximations of the Holmström-Milgrom Brownian-motion model of intertemporal incentive provision. Econometrica
70 (6), 2225–2264.

Holmström, Bengt, 1979. Moral hazard and observability. Bell J. Econ. 10 (1), 74–91.
Holmström, Bengt, Milgrom, Paul, 1987. Aggregation and linearity in the provision of intertemporal incentives. Econometrica 55 (2), 303–328.
HSBC Global Banking and Markets, 2022. Equities. https://www.gbm.hsbc.com/solutions/markets/equities.
Kruse, Thomas, Strack, Philipp, 2015. Optimal stopping with private information. J. Econom. Theory 159, 702–727.
Kyle, Albert S., 1985. Continuous auctions and insider trading. Econometrica 53 (6), 1315–1335.
Kyle, Albert S., Obizhaeva, Anna A., Wang, Yajun, 2018. Smooth trading with overconfidence and market power. Rev. Econ. Stud. 85 (1), 611–662.
Madsen, Erik, 2022. Designing deadlines. Amer. Econ. Rev. 112 (3), 963–997.
Morgan Stanley, 2022. Wealth management disclosures. https://www.morganstanley.com/wealth-disclosures/disclosures#5.
Nasdaq, 2022. How much does trading cost the buy side? https://bit.ly/3U1O2Gw.
Obizhaeva, Anna A., Wang, Jiang, 2013. Optimal trading strategy and supply/demand dynamics. J. Financial Mark. 16 (1), 1–32.
Risk.net, 2021. Page 19901: The benchmark that time forgot. https://www.risk.net/7818166.
Röell, Ailsa, 1990. Dual-capacity trading and the quality of the market. J. Financ. Intermediat. 1 (2), 105–124.
Sannikov, Yuliy, 2008. A continuous-time version of the principal-agent problem. Rev. Econ. Stud. 75 (3), 957–984.
Securities Industry and Financial Markets Association, 2021. Global equity markets primer: Market costs. https://bit.ly/3eGr5IL.
Seppi, Duane J., 1990. Equilibrium block trading and asymmetric information. J. Finance 45 (1), 73–94.
The Wall Street Journal, 2022a. Big stock sales are supposed to be secret. The numbers indicate they aren’t. https://on.wsj.com/3LrYQZy.
The Wall Street Journal, 2022b. How we analyzed Wall Street block trades. https://on.wsj.com/3vwaLjP.
The Wall Street Journal, 2024. Morgan Stanley agrees to pay $249 million to settle block-trading probes. https://on.wsj.com/3UIn6N5.
Traders Magazine, 2005a. NYSE & NASD investigate guaranteed VWAP. https://bit.ly/3BSsu8f.
Traders Magazine, 2005b. VWAP debate divides the trading industry. https://bit.ly/3vmUspm.
US Securities and Exchange Commission, 2005. Regulation NMS: Final rules and amendments to joint industry plans. Federal Register 70, 124.
29

http://refhub.elsevier.com/S0304-405X(24)00124-7/sb38
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb38
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb38
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb39
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb40
https://www.gbm.hsbc.com/solutions/markets/equities
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb42
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb43
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb44
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb45
https://www.morganstanley.com/wealth-disclosures/disclosures#5
https://bit.ly/3U1O2Gw
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb48
https://www.risk.net/7818166
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb50
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb51
https://bit.ly/3eGr5IL
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb53
https://on.wsj.com/3LrYQZy
https://on.wsj.com/3vwaLjP
https://on.wsj.com/3UIn6N5
https://bit.ly/3BSsu8f
https://bit.ly/3vmUspm
http://refhub.elsevier.com/S0304-405X(24)00124-7/sb59

	Block trade contracting
	Introduction
	Model
	Contracting environment
	Market model
	The client's problem
	The contract set

	First-Best Benchmark
	First-best entails trading at a constant rate
	First-best is achievable with an unrestricted contract set

	Discrete-Time Solution
	The dealer's best response
	The general solution
	When permanent price impact is the only influence
	When temporary price impact is the only influence
	When price risk is the only influence
	Discussion of the general solution

	Continuous-Time Limit
	The optimal contract
	Discussion of outcomes under common contracts

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	
	Data availability
	Appendix A. Proofs of Results Stated in the Main Text
	Appendix B. Supplementary data
	References


