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Many scarce public resources are allocated at below-market-clearing
prices and sometimes for free. Such “nonmarket” mechanisms sacrifice
some surplus, yet they canpotentially improve equity.Wedevelop amodel
ofmechanismdesignwith redistributive concerns. Agents are character-
ized by a privately observed willingness to pay for quality, a publicly ob-
served label, and a social welfare weight. A market designer controls al-
location and pricing of a set of objects of heterogeneous quality and
maximizes the expectation of a welfare function. The designer does not
directly observe individuals’ social welfare weights.We derive structural in-
sights about the form of the optimal mechanism, leading to a framework
for determining how and when to use nonmarket mechanisms.
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I. Introduction
Many goods and services—such as certain types of housing, food, and
health care, as well as national park permits, road access, and various public
services—are allocated at below-market-clearing prices, and sometimes for
free. Such “nonmarket”mechanisms naturally raise concerns among econ-
omists because they sacrifice some allocative surplus by failing to allocate
resources to those who value them the most. However, policy makers often
justify nonmarket mechanisms on fairness grounds: If resources were allo-
cated using market-clearing prices, they argue, agents with the lowest will-
ingness to pay would be excluded from enjoying their benefits. Because
low willingness to pay for many goods and services is likely to be correlated
with adverse social and economic circumstances—such as lowwealth, health
problems, or unemployment—marketplace designers may be especially
concerned about the welfare of such agents. But how should we think
about the resulting efficiency-equity trade-off?
We study amodel in which amarket designer allocates a fixed supply of

goods with heterogeneous quality. Each agent’s utility is linear in the
quality of the received good and in monetary transfers—allowing us to
parameterize agents’ preferences by a single parameter called willingness
to pay (orWTP for short). Besides the privately observedWTP for quality,
each agent is characterized by a publicly observed label and an unob-
served social welfare weight. The welfare weight is a reduced-form repre-
sentation of the designer’s redistributive preferences; it measures the so-
cial value of giving 1 unit ofmoney to an agent. Unobservability of welfare
weights captures the idea that the designer may not have direct access to
information about the agent—such as her detailed financial, social, and
economic situation—that determines the welfare weight.
We characterize the optimal incentive-compatible and individually ra-

tional allocationmechanism for a designer who seeks tomaximize the ex-
pectation of the welfare function, given by the sum of agents’ utilities
weighted by their social welfare weights. The welfare function places
someweight on revenue as well, with theweight interpreted as themarginal
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value for the designer of spending adollar on themost valuable social cause
(e.g., the weight on revenue is equal to the average welfare weight when rev-
enue is returned to agents in the form of a lump-sum transfer).
The market design approach that we develop is complementary to the

classical public finance approach. Our designer decides about the alloca-
tion of a single type of good without considering the interaction of this
allocation process with macro-level redistribution. The supply of goods
and the social welfare weights are thus modeled as exogenous. While
these assumptions are limiting in some contexts, they are natural descrip-
tions of many relevant policy problems. For example, public assistance
programs (such as allocation of public housing or food stamps) are often
run bymunicipalities or local governments that have limited control over
tax policies. Central governments also resort to nonmarket mechanisms
when allocating scarce resources, despite having access to conventional
redistributive tools; for example, Covid-19 vaccines were allocated free
of charge inmost countries, at least partially because settingpositive prices
would disadvantage poorer populations, an outcome viewed by many as
raising moral and fairness issues.1

The key tension in our market design framework is that the designer
has redistributive preferences but does not directly observe the social wel-
fare weights. For example, the designer might want to allocate public
housing only to people who have both low income and low expected fu-
ture income. While current income can perhaps be observed relatively
precisely (as can be captured by labels in our model), agents are likely
to have private information relevant to determining their future financial
situation. The designer cannot elicit this information truthfully in any
(static) allocationmechanism: for example, if the designer were to prom-
ise better terms to those whodeclare low expectations of future income, it
would be beneficial for everyone to make such a claim. In the absence of
additional tools, the designer is thus forced to rely exclusively on two
types of information: labels—which are publicly observed—and WTP for
quality—which can be truthfully elicited by mechanisms with transfers.
As a result, the designer uses the statistical correlation of labels and WTP
with the unobserved welfare weights to “forecast”who ismost in need from
the perspective of social welfare. Nonmarket mechanisms—understood as
allocating qualities at prices that do not clear the market and thus necessi-
tate rationing—are optimal precisely when the observable and elicitable
information reveals inequalities in the underlying welfare weights.
1 See, e.g., Pathak et al. (2022, 2023), Schmidt et al. (2020), and references therein. In
follow-up work, Akbarpourⓡ al. (2024) study the problem of vaccine allocation by extend-
ing the framework of the current paper to a setting in which agents have socioeconomic
and health externalities.
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Our first main result shows that, fixing a group of agents with the same
label (e.g., income below a certain threshold), a nonmarket allocation is
used for agents with the lowest WTP under two conditions: (1) the ex-
pected welfare weight conditional on the label is strictly higher than
the weight on revenue, and (2) all agents in the group have a strictly pos-
itive WTP for quality. The first condition means that the label identifies a
group such that the social value of giving 1 unit of money to a random
member of that group is higher than the weight on revenue, but the de-
signer cannot give a lump-sum payment exclusively to this group.2 The
second conditionmeans that the good is “universally desired,” a property
that is likely to hold for essential goods such as housing or basic health
care. The result then predicts that lowest qualities of universally desired
goods are offered free of charge (but subject to rationing and/or random
allocation) to agents with the lowest WTP. Agents with higher WTP will
often be offered higher qualities at positive prices; however, prices are
lower than what they would be in the market allocation, since the free al-
location of lowest qualities allows the designer todecrease prices forhigher
qualities.
We call the first reason for using nonmarket mechanisms “label-

revealed inequality.” Effectively, the designer uses information revealed
by labels to identify groups of agents with high welfare weights on aver-
age; she then subsidizes these groups, using a combination of free alloca-
tion to low-WTP agents and reduced prices for high-WTP agents. We pro-
vide conditions under which the optimal mechanism takes the simple
form—often encountered in practice—in which the allocation to the
whole group is free. In this case, the assignment of quality is independent
of agents’WTP; in themodel, it corresponds to a fully random allocation.
Condition 1, described in the preceding paragraph, is necessary for such
fully random allocation to be optimal. In particular, it is never optimal to
allocate the good for free to all agents when label-contingent lump-sum
payments are available to the designer.
Our second main result identifies a distinct reason to use nonmarket

mechanisms. Under the assumption that the weight on revenue is weakly
above the average welfare weight in a given group (e.g., when the designer
can give a lump-sum payment to the group), we show that the market al-
location is optimal if and only if a certain function—a weighted sum of
virtual surplus and welfare-weighted information rents—is nondecreas-
ing. We then argue that this function fails to be nondecreasing when,
2 If a lump-sum payment could be given to all agents with the same label in a frictionless
manner, the weight on revenue would be at least equal to the value of giving these agents a
lump-sum payment, which is, by definition, their average welfare weight. Practical reasons
for the inability of the designer to condition lump-sum payments on the label could in-
clude administrative costs, political constraints, or inefficiencies associated with giving cash
to agents suffering from behavioral biases.
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conditional on the label, there is strong negative correlation between
WTP and social welfare weights. We call this effect “WTP-revealed in-
equality.” When lower WTP reveals higher expected welfare weights, the
designer chooses to distort the market mechanism and provide some of
the goods at reduced prices. Unlike in the case of label-revealed inequal-
ity, the designer targets the policy specifically to those agents within the
groupwho select the random-allocation, reduced-price option. The policy
achieves the redistributive goal because agents with highest WTP are in-
centivized to select the nonrandom high-price option.
The key condition of strong negative correlation between WTP and

welfare weights is likely to hold in contexts where the variation in WTP
stems mainly from the variation in the ability to pay—which could de-
pend on individuals’ wealth—and the designer’s preferences depend on
individuals’ ability to pay. The assumption is thus more plausible when
labels are less informative (e.g., the designer cannot observe agents’ in-
comes directly), when the good is relatively expensive (so that only high-
income individuals would be able to afford it under themarket allocation),
and when WTP is not too heavily affected by subjective tastes (e.g., the
good is essential).
We have so far focused on describing conditions under which nonmar-

ket mechanisms are optimal. However, our framework predicts that mar-
ket allocations are optimal in many (and perhaps most) environments—
even when the designer has strong redistributive preferences. Market
mechanisms are preferred when the weight on revenue is high, which
could be because the designer uses the revenue to give a lump-sum pay-
ment to a disadvantaged group of agents or to subsidize an outside cause
that is valuable from a welfare perspective. In particular, when allocating
public resources to corporations, it is natural to expect that the weight on
revenue far exceeds the average welfare weight. Market mechanisms are
also optimal when WTP is not strongly correlated with welfare weights.
This could arise for two distinct reasons: the labels could be very informa-
tive, so that the designer can infer the welfare weights solely on the basis
of observable information; or WTP could be shaped primarily by factors,
such as private tastes, that are orthogonal to social preferences. The latter
case helps explain why we would not want to use nonmarket mechanisms
for most affordable, everyday goods and services. We further comment
on the market design implications of our results in section VI.
Related work.—Nonmarket allocations in our setting can be inter-

preted as a form of in-kind transfer—and economists have long been
interested in the efficiency and redistributive impacts of such mecha-
nisms. Weitzman (1977), for instance, showed that a free, fully random
allocation can be better than competitive pricing when the agents’ needs
(as reflected in the designer’s objective function) are not well expressed
by their WTP. Guesnerie and Roberts (1984), meanwhile, gave a general
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argument that in-kind transfers can be optimal in second-best environ-
ments. Nichols and Zeckhauser (1982) were among the first to point
out that by increasing the cost of participating in transfer programs, the
government can deter the rich from participating, as long as the cost af-
fects the poor less than the rich. Many other papers studied self-targeting
mechanisms in different settings; see, for instance, Blackorby and Don-
aldson (1988), who showed that in-kind transfers can be superior to cash
transfers because they screen for the right type of individuals; Besley and
Coate (1991), who studied self-targeting for public options; and Gahvari
andMattos (2007), who analyzed conditional cash transfers.3 Additionally,
Cremer and Gahvari (1997) showed that in-kind transfers can be useful
even in the presence of optimal nonlinear income taxation. Currie and
Gahvari (2008) provided an excellent survey of this literature and dis-
cussed several other justifications for existence of in-kind transfers.4

Our key contribution to the study of in-kind transfers is to employ tools
from the theory of mechanism design to explore the optimal structure of
such redistribution schemes under rich private information and an arbi-
trary set of observable labels. We share this market design perspective on
redistribution with the work of Condorelli (2013) and Dworczak ⓡ Ko-
miners ⓡ Akbarpour (2021). Condorelli (2013) provided conditions for
the optimality of market and nonmarket mechanisms for allocating iden-
tical objects to agents in an environment where the designer maximizes
agents’ values that may be different from their WTP. We extend Con-
dorelli’s (2013) model and objective function by allowing the designer
to have preferences over revenue and accommodating cases in which lump-
sum transfers are not feasible. These features lead to new insights and im-
plications—for instance, when lump-sum transfers are restricted, ran-
domization in themechanismmay be optimal even under conditions that
would make rationing suboptimal in the setting of Condorelli (2013). Ad-
ditionally, our model features heterogeneous qualities of objects (so that
our allocations are matchings between types and qualities) and groups of
agents with the same observable characteristics (giving rise to the novel
across-group allocation problem). Finally, we focus on the economic im-
plications of maximizing a redistributive objective function, while Con-
dorelli worked with a generic objective function. Dworczakⓡ Kominersⓡ
Akbarpour (2021) studied a closely related question in the context of
3 Self-targeting has also been found to be an effective way of allocating resources in de-
velopment economics contexts; see, e.g., Alatas et al. (2016). A similar mechanism, albeit
in the very different context of constitutional design, was explored by Aidt and Giovannoni
(2011).

4 Note that the economic arguments in favor of in-kind transfers that we focus on in this
paper are distinct from and independent of the idea that it may make sense to give in-kind
transfers for paternalistic reasons, such as in response to agency problems within a house-
hold—one of the motivations described by Currie and Gahvari (2008).
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buyers and sellers with heterogeneous marginal utilities of money trad-
ing a homogeneous good. The current paper takes a more practical ap-
proach by focusing on the problem of allocating public resources and
by incorporating a range of features that play a key role for real-life policy
makers: heterogeneous quality of objects, richer preferences over reve-
nue, additional observable information about the agents, and potential
restrictions on the use of lump-sum transfers.
A few recent papers have enriched these frameworks in different ways.

For example, Kang and Zheng (2020) characterized the set of constrained
Pareto-optimal mechanisms for allocating a good and a bad to a finite set
of asymmetric agents, with each agent’s role as a buyer or a seller deter-
mined endogenously by the mechanism. Kang (2023) allowed for an
exogenous private market where agents can also purchase the good
(of potentially higher quality). Reuter and Groh (2020) studied a similar
problem of allocating a finite number of goods to finitely many agents
under redistributive preferences, addressing new challenges in analyzing
and implementing the optimal allocation mechanism in the finite case.
Fan, Chen, and Tang (2023) analyzed optimal allocations of a divisible
good when agents have quadratic preferences over quantity and differ
in bargaining power (modeled as a weight in the designer’s objective).
Finally, Kang and Zheng (2023) studied a buyer-seller market, where
agents are entitled to equal shares of a limited resource, and character-
ized the optimal mechanism for arbitrary Pareto weights.
In our approach, (implicit) socioeconomic inequalitymotivates attach-

ing nonequal social welfare weights to agents. An alternative approach is
to model the effects of differences in wealth via budget constraints. The
sizable literature on auction design with budget constraints predicts that
the designer may resort to nonmarket allocations even when she is con-
cerned about maximizing allocative efficiency, as in the work of Che,
Gale, and Kim (2013). Nonmarket mechanisms play a different role in
the two approaches: In our framework, a nonmarket allocation may be
preferred to the efficient allocation if it redistributes enough surplus to
agents with high welfare weights. In the Che, Gale, and Kim (2013) set-
ting, nonmarket mechanisms arise when achieving the efficient alloca-
tion is not possible because of budget constraints.
In a broad sense, our paper is connected to the canonical frameworks

of public finance and optimal taxation literature (Diamond andMirrlees
1971; Atkinson and Stiglitz 1976). The key distinction is that in our frame-
work the designer takes the inequality in the market as given and does
not take into account how her mechanism might potentially influence
the welfare weights. In a sense, our designer cannot change agents’ en-
dowments directly—she can only design the rules of the allocation me-
chanism. The introduction of observable characteristics to our model is
a classical idea in the taxation literature. For example, Akerlof (1978)
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described how “tagging” could be used in the tax system for redistributive
purposes. The interpretation of welfare weights in ourmodel is also closely
analogous to how they are used in public finance; specifically, Saez and
Stantcheva (2016) introduced generalized marginal welfare weights in
the context of optimal tax theory and interpreted them as the value that
society puts on providing an additional dollar of consumption to a given
individual.
From a technical perspective, our paper is related to a recent body of

work that generalizes the Myerson (1981) ironing technique (see also
Toikka 2011). In concurrent research, Loertscher andMuir (2022) relied
on similar techniques to solve a problem of a revenue-maximizing seller
in the presence of resale; Ashlagi, Monachou, andNikzad (2021) showed
that these methods can be also used in designing the optimal dynamic
allocation scheme in a multigood environment by optimizing over how
much information is disclosed about different types of objects; Kang
(2024) derived a variant of this approach based on a tool called the
constrained-maximum principle. Finally, Kleiner, Moldovanu, and Strack
(2021) demonstrated that all these procedures can be obtained as a spe-
cial case of a general property of extreme points that arises in optimiza-
tion problems involving majorization constraints.
II. The Model

A. Framework
A designer allocates a set of objects of heterogeneous quality to a set of
agents who differ in both their observable and unobservable characteris-
tics. There is a unitmass of agents, with each agent characterized by a type
vector (i, r, l). The three dimensions of agents’ type vectors have a joint
distribution in the population that is known to the designer; formally, we
can think of (i, r, l) as the realization of a random variable on some un-
derlying probability space, where E½�� is used to denote the expectation
operator.5 The first ingredient of the type vector, called the label, takes
one of finitely many values from the set I and is assumed to be publicly
observed. Agents with the same label form a group; there are (measure)
mi > 0 agents in group i. The parameter r ∈ R1 is the willingness to pay
( for quality), which is privately observed by the agent. Conditional on la-
bel i, the WTP r has a distribution with cumulative distribution function
(CDF) Gi and continuous density gi, strictly positive on ½r i, �ri �. Finally,
l ∈ R1 is the social welfare weight on a given individual, interpreted as
the social value of giving that individual 1 unit of money. Individuals
5 We do not define notation for the joint distribution because it will not be needed, other
than through conditional expectations and some marginal distributions that we introduce
next.
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observe their own types,6 but neither r nor l of any given individual is ob-
served by the designer.
There is a unit mass of objects, with each object characterized by a one-

dimensional quality q ∈ Q ⊆ ½0, 1�, whereQ is a compact set. The assump-
tion of unit mass is without loss of generality: if there is only a mass m < 1
of objects, we can always add an extra mass 1 2 m of “null” objects with
q 5 0 because receiving an object with quality 0 in our model is equiva-
lent to not receiving an object at all. Let F denote the CDF of q; that is,
F(q) is the total mass of objects of quality equal to or less than q.
If an agent withWTP r is assigned a good with quality q in exchange for

a monetary transfer t, that agent’s utility is rq 2 t; if that agent has a so-
cial welfare weight l, then the contribution of that individual to the so-
cial welfare function will be lðrq 2 tÞ.
Note that our framework incorporates a few strong assumptions about

the environment. First, we assume that agents’ utility is quasi-linear in
money. Second, we assume that agents differ only in their “intensity”
of preferences but agree on the ranking of qualities. Third, each agent’s
utility depends only on the expected outcome—agents are risk neutral.7

Fourth, social preferences are captured by weights that are exogenous—
reflecting an implicit assumption that the designer does not take into ac-
count how her chosen allocation affects social preferences. These simpli-
fying assumptions allow us to derive tight results without imposing any
restrictions on the set of mechanisms.
B. Assignments and Mechanisms
An assignment Γ is a collection of FIF measurable functions Γi : ½r i, �ri �→
ΔðQ Þ, with Γiðqjr Þ interpreted as the probability that an agent in group i
with WTP r is assigned an object with quality q or less. The assignment
Γ is feasible if

Γið�jr Þ is a CDF for all i, and r ∈ ½r i, �ri�; (1)

o
i∈I
mi

ð�ri

r
i

Γiðqjr Þ dGiðr Þ ≥ F ðqÞ, 8 q ∈ Q: (2)

Condition (2) states that the distribution of assigned qualities is first-
order stochastically dominated by the distribution of available qualities.
6 As we show, it does not matter whether an individual can observe her own social wel-
fare weight l.

7 While we cannot easily accommodate risk aversion, we can capture some aspects of risk
aversion over the assigned quality by defining the agent’s utility to be rvðqÞ 2 t for some
concave function v. In that case, we would define a new random variable ~q 5 vðqÞ with
CDF ~F , called “risk-adjusted quality,” and apply our results with ~F as the primitive distribu-
tion of quality.
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The condition reflects the availability of free disposal—a decrease in qual-
ity can be achieved by randomizing between a given quality and quality 0.
Because the utility of agents depends only on the expected quality, it will
be convenient to denote

Q ΓiðrÞ 5
ð1

0

q dΓiðqjrÞ;

we write simply Qi(r) if the reference to the underlying assignment Γi is
clear.
To describe feasible mechanisms, we rely on the revelation principle.

A direct mechanism ðΓi , tiÞi∈I asks agents to report their WTP r, assigns
objects according to ΓiðqjrÞ in group i, and charges agents according to
the transfer function ti(r). As it turns out, we do not have to include
the social welfare weight l in the agent’s report, because no incentive-
compatible mechanism can improve the social welfare function by trying
to elicit this information from agents (see claim 2).
Lump-sum payments to agents may or may not be allowed in different

applications of our framework. We use the following modeling approach
to accommodate all possible cases: There is no hard budget constraint for
the designer, but the mechanism must use nonnegative transfers, that is,
tiðrÞ ≥ 0 for all i and r.8 However, lump-sum payments to agents may hap-
pen “outside of the mechanism”; this is captured through the designer’s
value for generating monetary surplus in the mechanism (in the objec-
tive function that we formally introduce in sec. II.C). For example, if
the value for generatingmonetary surplus is 0 in the designer’s objective,
then the constraint of nonnegative transfers is binding and means that
lump-sum payments are not allowed. However, if the value for generating
monetary surplus is equal to the value of giving a lump-sum payment to
all agents, then it is as if lump-sum payments to all agents were allowed.
We comment on other cases later in the paper. For incentive-compatible
mechanisms, the condition that transfers are nonnegative is equivalent
to requiring that for each group i, the utility U i of type r i satisfies U i ≤
r iQ Γiðr iÞ.
Formally, a mechanism ðΓi , tiÞi∈I is feasible if

• Γ is a feasible assignment, that is, it satisfies conditions (1) and (2);
• each agent reports her WTP truthfully:

rQ Γiðr Þ 2 tiðr Þ ≥ rQ Γiðr̂ Þ 2 tiðr̂ Þ, 8 i, r , r̂ ; (3)

and
8 Because agents are buyers in our framework, this constraint on transfers has no impact
on the set of implementable allocation rules—it constrains only lump-sum transfers.
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• each agent receives nonnegative utility from the mechanism but
does not receive a positive money transfer:

0 ≤ U i ≤ r iQ
Γiðr iÞ, 8 i: (4)

The following claim follows from standard arguments that extend
Myerson (1981):
Claim 1. A mechanism is feasible if and only if Γ is a feasible assign-

ment, Q Γiðr Þ is nondecreasing in r for all i, and for all r, ti(r) satisfies

UiðrÞ ; rQ Γiðr Þ 2 tiðr Þ 5 U i 1

ðr

r
i

Q ΓiðtÞ dt (5)

for some U i ∈ ½0, r iQ Γiðr iÞ�.
Note that equation (5), commonly referred to as the “envelope formula,”

provides an expression for the utility of an agent with WTP r in an
incentive-compatible mechanism.
C. The Objective Function
We assume that the designer maximizes the expectation of a weighted
sumof revenue and agents’utilities weighted by their social welfare weights.
The following observation—which has beenmade before in different con-
texts—implies that our definition of a feasible mechanism is without loss
of generality for maximizing this objective:
Claim 2. The designer cannot increase the expectation of her objec-

tive function by using an incentive-compatible mechanism that elicits in-
formation about l.9

Claim 2 is intuitive: Since, conditional on r, l has no bearing on the in-
dividual’s preferences, no incentive-compatible revelation mechanism
can condition the allocation or payments directly on the reported l. That
is, if themechanism attempted to elicit l, then agents would always report
whatever l would lead to the best possible treatment by the mechanism,
regardless of their true type. As a consequence, the designer must form
beliefs about l based on the information she is able to elicit and ob-
serve—that is, r and i. Define

liðr Þ ; E½lji, r �
to be the expectation of l conditional on i and r, under their joint distri-
bution. To distinguish li(r) from the underlying social welfare weight l,
9 The claim follows from analogous results proven by Jehiel and Moldovanu (2001) and
Che, Dessein, and Kartik (2013); see also Dworczak ⓡ Kominers ⓡ Akbarpour (2021) for
the formulation and proof of the claim in a similar economic context.
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we call li(r) the Pareto weight on an agent with label i andWTP r. For tech-
nical reasons, we assume that li(r) is continuous in r for each i. Let

�li ;
ð�ri

r
i

liðrÞ dGiðr Þ

be the average Pareto weight for group i.
With this, we can write the designer’s objective function as

ao
i∈I
mi

ð�ri

r
i

tiðr Þ dGiðr Þ
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
revenue

1 o
i∈I
mi

ð�ri

r
i

liðr ÞUiðr Þ dGiðr Þ
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
social surplus with weights li

, (OBJ)

where a ≥ 0 is the weight on revenue. Let

hiðr Þ ; 1 2 Giðr Þ
giðrÞ

denote the inverse hazard rate of Gi, and let

JiðrÞ ; r 2
1 2 Giðr Þ

giðr Þ
denote the virtual surplus function. It is well known from Myerson
(1981) that hi(r) measures the information rents of an agent with WTP
r, while Ji(r) captures the designer’s revenue in an incentive-compatible
mechanism. Finally, let

ΛiðrÞ ; E~r∼Gi
½lið~r Þji, ~r ≥ r �

be the average Pareto weight attached to agents in group i with WTP
above r. A simple calculation then shows an alternative representation
of the objective function (OBJ):
Claim 3. The objective function (OBJ) can be written as

o
i∈I
mi

ð�ri

r
i

ViðrÞQ ΓiðrÞ dGiðrÞ 1 ð�li 2 aÞU i

� �
, (OBJ0)

where

Viðr Þ ; aJiðrÞ 1 Λiðr Þhiðr Þ:
The function Vi(r) can be interpreted as the expected social value of al-

locating a unit of quality to an agent in group i withWTP r in an incentive-
compatible mechanism. Note that in the standard paradigm of fully
transferable utility, this value function would simply be Jiðr Þ 1 hiðr Þ 5
r , thus reducing to a measure of allocative efficiency. With a 5 0 and con-
stant Pareto weights, the value function would reduce to hi(r), which
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corresponds to the case of maximizing agent surplus when payments are
interpreted as “money burning.” In our setting, the value function con-
sists of a weighted sum of virtual surplus Ji(r) (corresponding to revenue)
and information rents hi(r) weighted by the function Λi(r) representing
the Pareto weights. The weight Λi(r) on the information rent of type r is
given by the expected social welfare weight on all agents in group i with a
WTP above r—this is a consequence of the envelope formula (5), which
dictates that in order for the mechanism to remain incentive compati-
ble, any increase in utility of type r must also be received by all higher
types.
Our objective function is quite general but has important limitations

within the context of redistribution. Primarily, the approach of using ex-
ogenous welfare weights reflects the assumption that the designer takes
inequality as given. With this formulation, she cannot express prefer-
ences over any inequality created by the mechanism itself. In particular,
we do not accommodate quotas that control the overall fairness of the
outcome and are popular in some contexts, such as school choice (see,
e.g., Echenique and Yenmez 2015; Bodoh-Creed and Hickman 2018).
D. Interpretation
Claim 2makes it clear that li(r)—the Pareto weight—is effectively a prim-
itive of our model. Nevertheless, we introduced the unobserved social
welfare weights to emphasize the economic forces that give rise to any
particular li(r).
The average Pareto weights �li and �lj differ to the extent that the labels

i and j capture observable information that is correlated with the social
welfare weights. For example, if tax data allow the designer to determine
the income bracket for each agent, then agents associated with lower in-
come brackets might receive a higher average Pareto weight.
Similarly, dispersion in li(r) for any given i should be interpreted as

residual correlation between WTP and social welfare weights, conditional
on i. For a concrete example, suppose first that no observable informa-
tion is available, but we elicit the WTP of two individuals, A and B, for
a high-quality house in an attractive neighborhood. Agent A is willing
to pay $500,000, while agent B is willing to pay only $50,000. While the
difference in WTP between A and B may be driven by preferences, it
likely also reflects characteristics such as income and opportunity cost
ofmoney that could, in turn, affect the welfare weights. Thus, without ob-
serving the characteristics that inform welfare directly, the designer may
place a higher Pareto weight on the agent with lower WTP, reflecting a
Bayesian belief that this agent is more likely to be poor. Now suppose that
the designer additionally has access to tax data, and she knows that agents
A and B have the same income. Conditional on that information, the
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correlation between WTP and welfare weights becomes weaker; WTP
originally appeared to be more strongly correlated with welfare weights
because of the omission of a relevant variable—income. However, that
correlation is likely still negative, as long as other unobserved character-
istics—such as health shocks or future job prospects—influence both the
welfare weights and WTP for a house. More generally, the more informa-
tive the label, the less residual correlation one would expect between r
and l. But there are also cases when the correlation can be very weak even
in the absence of informative labels. For example, when the good to be
allocated is a movie ticket, and agent A is willing to pay $10, while agent
B is willing to pay only $1, themost likely inference is that agent A is more
interested in that movie than agent B—not necessarily that B is very poor
or otherwise socially disadvantaged. Summarizing, li(r) naturally de-
pends on the strength of the underlying social preferences and the de-
gree to which they are uncovered by the label i, but it also depends on
the characteristics of the good, such as the relative importance of personal
taste versus ability to pay in determining the WTP for it.
As discussed in section I, we think of a—the weight on revenue—as

representing the marginal social value generated by an additional dollar
in the designer’s (unmodeled) budget.10 For example, if a local author-
ity generates revenue by running a public housing program, the mone-
tary surplus can be returned to citizens as a tax cut or used to invest in the
construction of new homes. Thus, by varying a, we can analyze how the
optimal allocation mechanism changes, depending on the best available
use of revenue for the designer.
Several special cases are of particular interest. When a 5 �li , a dollar of

revenuehas the same value to the designer as giving a dollar to a randomly
selected agent within group i; similarly, when a 5 �l ; oimi

�li , a dollar of
revenuehas the same value to the designer as giving a dollar to a randomly
selected agent from thewhole population. These cases aremathematically
equivalent to assuming that the designer uses the revenue to finance
lump-sum payments to agents in group i, or all agents, respectively.
The case a 5 �l can be thought of as a default specification in which

the set of agents represents the entire (local) population, the revenue
generated from the mechanism subsidizes the government’s budget,
and the marginal cost of financing the budget is �l. If the designer uses
the additional dollar of revenue to lower taxes (so as to balance the bud-
get), then it is also possible that a < �l if taxation is progressive. For both
of these interpretations, we are implicitly assuming that the designer can-
not use the extra dollar of revenue to give lump-sum payments to some
“preferred” group i (a group i with �li > �l).
10 In the public finance literature, a is often referred to as the “marginal value of public
funds.”
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More generally, whenever a < �li for some label i, lump-sum payments
to group i are restricted (this is exactly when our assumption of nonneg-
ative transfers in the mechanism has bite). This could be, for example, a
consequence of political constraints.11 Another interpretation is that
lump-sum payments are allowed but there are frictions (such as adminis-
trative costs) that decrease their marginal value below parity. In the ex-
treme case a 5 0, our model becomes mathematically equivalent to a
costly-screening (money-burning) model in which an agent’s payment
to the designer is more appropriately interpreted as a costly activity (such
as standing in a queue) that is socially wasteful.
On the other hand, setting a > �li captures cases in which the designer

has a higher value from spending the revenue outside of group i. This
could be because label-contingent lump-sum payments are feasible and
there exists another group jwith �lj > �li . Another possibility is that the de-
signer can spend themonetary surplus generated by themechanism on a
socially valuable outside cause (such as infrastructure investment).
III. Optimal Mechanisms
We identify an optimal mechanism in two steps:

1. The objects are allocated “across” groups: F is split into FIF CDFs F |
i .

2. The objects are allocated “within” groups: for each label i, the ob-
jects F |

i are allocated optimally according to the expected-quality
schedule Q |

i .

We first explain how to solve the “within” problem and then use the so-
lution there to solve the “across” problem.
A. The “Within” Problem
In this step, we assume that Fi is the CDF of object qualities that are to be
allocated to agents with label i. Formally, we refer to the “within problem
for group i” as maximizing (OBJ0) subject to feasibility with I 5 fig,
mi 5 1, and F 5 Fi. For a function Ψ, let co(Ψ) denote the concave clo-
sure of Ψ (i.e., the point-wise smallest concave function that bounds Ψ
from above), and let cd(Ψ) denote the concave decreasing closure of Ψ
(i.e., the point-wise smallest concave decreasing function that bounds
Ψ from above). When i is fixed, we sometimes abuse terminology slightly
by referring to r as the agent’s type.
11 Liscow and Pershing (2022) show, using survey data, that the general population (in
the United States) expresses a much stronger political support for in-kind redistribution
than for cash transfers.
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We say that there is assortative matching among types r ∈ ½a, b�, if
Q |

i ðrÞ 5 F 21
i ðGiðrÞÞ for all r ∈ ½a, b�. To account for the possibility that

some objects may remain unallocated, we say that the matching is effec-
tively assortative when it is assortative for

r ∈ ½inf r :Q |
i ðr Þ > 0f g, �ri �:

We say that there is random matching among types r ∈ ½a, b� if Q |
i ðrÞ 5 �q

for some �q ∈ ½0, 1� and all r ∈ ½a, b�.12
Remark 1. Because we have not imposed any assumptions on F (e.g.,

we have not ruled out degenerate distributions of quality), assortative
and random matching could coincide (if Fi is constant in the relevant
range). In particular, the two concepts do not differ when all types in a
given interval are not allocated any objects. The distinction between ran-
dom and assortative matching can be guaranteed to be meaningful for
each group i by assuming that (i) F ð0Þ 5 0, (ii) F is continuous, and
(iii) it is optimal to allocate all objects within group i, which is implied
by

Ð ri
r
i
ViðrÞ dGiðrÞ ≥ 0 for all ri.

Theorem 1. Define

ΨiðtÞ ;
�ð1

t

ViðG21
i ðxÞÞ dx

�
1max 0, �li 2 a

� �
r i1 t50f g:

The optimal value of the within problem for group i is given byð1

0

cd Ψið ÞðFiðqÞÞ dq:

An optimal solution is given by an expected-quality schedule

Q |
i ðr Þ 5 Φ|

i ðGiðrÞÞ1 r≥G21
i ðx|

i Þf g,

where [0, x|
i ] is the maximal interval on which cd(Ψi) is constant, and Φ|

i

is nondecreasing and satisfies

Φ|
i ðxÞ 5

ðb

a

F 21
i ðyÞ dy
b 2 a

if x ∈ ½a, b� and ½a, b� is a maximal interval

on which coðΨiÞ is affine,
F 21
i ðxÞ otherwise,

8>>>><
>>>>:

for almost all x.13 Moreover, it is optimal to set U i 5 0 when a ≥ �li and
U i 5 Q |

i ðr iÞr i when a ≤ �li.
12 Throughout, H21(x) denotes the generalized inverse of a right-continuous nonde-
creasing function H on [a, b]: H21ðxÞ 5 minfy ∈ ½a, b� :H ðyÞ ≥ xg, for all x ≤ maxyfH ðyÞg.

13 An interval [a, b] is a maximal interval on which co(Ψi) is affine if co(Ψi) is affine on
[a, b] and no interval ½c, d�⊋½a, b� has that property.



redistributive allocation mechanisms 1847
The proof of theorem 1 uses relatively standard techniques known as
“generalized ironing” that extend Myerson’s methods to richer environ-
ments. For completeness, and because several features of our setting (pri-
marily the nonnegativity of transfers and the continuous distribution of
quantity) require these methods to be adjusted, we present a complete
argument in the appendix. In the proof, we work with an arbitrary objec-
tive function of the form (OBJ0), not necessarily coming from maximiz-
ing a weighted sum of revenue and surplus.
Theorem 1 describes a simple procedure to obtain a closed-form solu-

tion to the within-group problem:

1. Compute the functionΨi that is a transformation of the original ob-
jective function. A noteworthy feature of Ψi is that it incorporates
the constraint that transfers are nonnegative:Whenever �li > a, this
constraint must bind, and hence U i is set to the maximal feasible
level Qiðr iÞr i. In the transformed objective function Ψi, this corre-
sponds to an upward jump at 0.

2. Compute the concave closure co(Ψi) and the concave decreasing
closure cd(Ψi) of Ψi.

3. If coðΨiÞ < cdðΨiÞ over some initial interval (0, x|
i ), then objects of

quality below the x|
i quantile of Fi are not allocated (the designer

uses the free-disposal option), and hence agents with WTP below
r |i 5 G21

i ðx|
i Þ are assigned quality 0. This can happen only if Ψi is

not decreasing everywhere, which requires Vi(r) to be negative
for some r.

4. The remaining object qualities are partitioned into intervals; the
remaining agents are partitioned in the order of increasing WTP
to match the mass of objects within each interval; whenever
co(Ψi) is affine on a (maximal) interval, thematching between types
and quality is randomwithin that interval; whenever co(Ψi) is strictly
concave on an interval, the matching between types and quality is
assortative.

The function Ψi plays a key role in determining the properties of the
optimal mechanism. To gain intuition, we can use integration by parts
and substitution, and obtain that for any r > r i ,

ΨiðGiðr ÞÞ 5
ð�ri

r

tliðtÞ dGiðtÞ 1 a 2 Λiðr ÞÞr ð1 2 Giðr Þð Þ: (6)

Thus, the value ofΨi at somequantile x 5 Giðr Þ, is the value to the designer
from selling quality 1 at a price of r.
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B. The “Across” Problem
On the basis of the solution to the within problem for each i separately,
we can now formulate the across problem as

max
ðFiÞi∈I o

i∈I
mi

ð1

0

cd Ψið ÞðFiðqÞÞ dq
� �

(7)

such thato
i∈I
miFiðqÞ 5 F ðqÞ, 8 q ∈ Q : (8)

Once the optimal F |
i are found that solve problem (7)–(8), the optimal

solution within each group i is described by theorem 1.
Our second technical result describes a solution procedure for the

across problem. Let �ViðxÞ ; jcdðΨiÞ 0ðxÞj denote the (absolute value of
the) slope of cd(Ψi) at quantile x. Intuitively, �ViðxÞ represents the “ironed”
social value that—unlike the social value ViðG21

i ðxÞÞ—is guaranteed to be
nondecreasing in x.
Theorem 2. There exists a nondecreasing nonnegative function

Vmin(q) such that the optimal solution ðF |
i Þi∈I to problem (7)–(8) satis-

fies, for all i and q,

F |
i ðqÞ 5 0 if �Við0Þ > V minðqÞ,
F |
i ðqÞ 5 1 if �Við1Þ < V minðqÞ,

F |
i ðqÞ solves �ViðF |

i ðqÞÞ 5 V minðqÞ otherwise:

8>><
>>:

Moreover, V minðqÞ 5 mini : F |
i ðqÞ<1f�ViðF |

i ðqÞÞg.
Theorem 2 gives rise to a simple procedure for allocating goods of dif-

ferent qualities across groups. The algorithm allocates the objects by
gradually increasing the CDFs F |

i , in the order of increasing (ironed)
marginal social values �Við�Þ 5 jcdðΨiÞ0ð�Þj. The function V min(q) keeps
track of the running minimum over these values across groups. Starting
from the lowest quality, we increase the CDF F |

i for group i with the small-
est �Vi at 0 (in the case where there are several such groups, the proof of
theorem 2 describes how to break the ties). At any q, we increase the CDF
of group(s) i with the lowest �Vi at F |

i ðqÞ. That is, only groups i with
�ViðF |

i ðqÞÞ 5 V minðqÞ are allocated objects with quality q. When some F |
i ðqÞ

reaches 1, we stop increasing the CDF for that group.
The procedure described in the preceding paragraph is a greedy algo-

rithm in that it allocates quality levels sequentially, from lowest to highest,
and the allocation of the given level of quality depends only on the rank-
ing of marginal social values across the groups, evaluated at the “current”
allocation. A greedy algorithm is optimal because, for all i, the ironed



redistributive allocation mechanisms 1849
marginal value �Við�Þ changes monotonically with the allocation to group
i. This is a consequence of the fact that the optimal within-group alloca-
tion concavifies the value function Ψi, as shown in theorem 1. Section V
illustrates the greedy procedure in a simple numerical example and gives
a graphical interpretation of the greedy procedure.
The proof of theorem 2 is in the appendix. Intuitively, we solve the

problem (7)–(8) by first considering a relaxed problem in which the
constraint that Fi(q) is a CDF is dropped and then verifying that there ex-
ists a solution to the relaxed program that is feasible. The index V min(q)
is the Lagrange multiplier on the resource constraint (8) for the relaxed
problem.
IV. Economic Implications
We now discuss the main economic implications of our framework. We
first focus on the within-group problem and emphasize the circumstances
under which using a nonmarket allocation becomes optimal. Then, we
turn attention to how the structure of the optimal within-group allocation
affects the split of qualities across different groups. In section V, we illus-
trate and build upon this analysis with a parametric example.
A. When to Use a Nonmarket Mechanism

1. Label-Revealed Inequality
Our first result shows that a nonmarket allocation becomes optimal when
a certain group has a high average Pareto weight and the good is desired
by all agents in that group—in a sense that we make precise next.
We say that the good is universally desired in group i if r i > 0, that is, if the

WTP of agents in group i is bounded away from 0.14 Themain example of
universally desired goods are essential goods (such as housing or basic
health care) that everyone has a need for. An implicit assumption behind
this interpretation is that each agent has at least some ability to pay, so
that a good fails to be universally desired only if some agents have no in-
trinsic value for it.15

Proposition 1 (Label-revealed inequality). If the average Pareto
weight �li in group i is strictly larger than the weight on revenue a and
14 Using the lower bound r i to define universally desired goods makes our results cleaner,
but the gist of the assumption is that Gi is concentrated on values of r above r i . That is, our
results that assume universally desired goods continue to hold for distributions that attach a
small enough mass to r ∈ ½0, r i �.

15 If there are some agents with no monetary holdings, then their WTP for any good is
zero, and our framework does not correctly account for their welfare, since it places no so-
cial value on their allocation, regardless of l.
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the good is universally desired in group i, then there exists r |i > r i such
that the optimal allocation within group i is random at a price of 0 for
all types r ≤ r |i .
Proposition 1 states that it is always optimal to allocate some objects

randomly to the lowest-WTP agents at a price of 0 if (i) the designer cares
more about the surplus of an average agent within group i than about
revenue and (ii) the good is universally desired. The first assumption
is likely to hold when label i is targeted for preferential treatment or af-
firmative action but making direct monetary transfers to group i is not
feasible. In the natural case a 5 �l, we have a < �li if the label i is associ-
ated with a group of agents that the designer cares about more than
about the average agent in the population.
For intuition, note that for a fixed allocation, whena < �li, the designer

would like to minimize the transfers that agents pay. The nonnegative-
transfers condition prevents the designer from giving a monetary trans-
fer to agents directly, and implementing assortative matching requires
prices to be increasing. Consider, instead, providing the lowest qualities
for free to all agents with WTP below some cutoff ri. When—and only
when—the good is universally desired, this policy leads to an increase
in the utility of the lowest-WTP agents. Increasing the utility of the lowest-
WTP agents, in itself, does not necessarily constitute an improvement in
the designer’s objective, because the designer need not be directly con-
cerned about the welfare of those agents; indeed, the only assumption
we made is about the average Pareto weight. However—and this is the
key observation—providing the goods for free to agents with low WTP
also allows the designer to lower prices (and hence increase utility) for
higher types. This comes at a cost: providing the goods for free precludes
any screening in the corresponding region, reducing allocative efficiency;
in particular, the highest-WTP agents in the free-allocation region must
necessarily receive below-efficient quality. However, it can be shown that
the reduction in allocative efficiency is always second order relative to
the benefits when the region of random matching is small (see app. B
for a formal argument; apps. B–D are available online).
The optimal mechanism determines the size of the random-allocation

interval by trading off a decrease in prices against a decrease in allocative
efficiency. Thus, it is often the case that random matching at the bottom
of the distribution of WTP coincides with assortative matching at the top
of the distribution. In section V, we illustrate how the random-allocation
region varies with the primitives of themodel, using a parametric example.
Here, we are instead interested in the circumstances under which the

trade-off is resolved toward a fully random allocation. This type of in-
kind redistribution is quite common in practice: the good is allocated
for free to those satisfying certain verifiable eligibility criteria (which are
captured by the label i in our model). Because the price is set to 0, some
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sort of rationing becomes necessary (which, in practice,may take the form
of an explicit or implicit lottery). To rule out trivial cases, we assume that
Fi—the pool of quality levels available to group i—is nondegenerate.16

Proposition 2 (Optimality of free provision). A necessary condition
for a fully random allocation to be optimal within group i is that

a�ri ≤
ð�ri

r
i

rliðrÞ dGiðrÞ: (9)

Condition (9) becomes sufficient if ViðrÞ 5 aJiðr Þ 1 ΛiðrÞhiðr Þ is quasi-
convex.
The key condition (9) is derived from a hypothetical scenario in which

the designer has only one (infinitesimal) unit of the object with quality 1
to allocate: for full randomization to be optimal, it must be that the value
of revenue from selling that object at amaximal price to the highest-WTP
agent is smaller than the value of allocating this object uniformly at ran-
dom at a price of 0. This necessary condition becomes sufficient under a
regularity condition on Vi(r).
Overall, proposition 2 provides some support for in-kind redistribu-

tion, but only if certain restrictive conditions are met. First, the designer
must not be able to target a direct cash transfer to the “eligible” agents.
Indeed, a direct consequence of inequality (9) is that optimality of full
randomization requires that the average Pareto weight �li in group i be
strictly higher than the weight on revenue a. In particular, if lump-sum
transfers to group i are feasible for the designer, then a fully random al-
location cannot be optimal. Second, the weight on revenue (measuring
how effectively it can be used for other purposes) should be relatively
small. Third, such schemes are more likely to be optimal for universally
desired goods; note that if the Pareto weights are nonincreasing, then the
right-hand side of condition (9) is bounded above by ð1=2Þð�ri 1 r iÞ�li, and
thus when r i 5 0, the average Pareto weight must be at least twice as large
as the weight on revenue. However, when r i is large, it may suffice that �li is
only slightly above a. Moreover, holding fixed �li > a, condition (9) is satis-
fied in the limit as the support ofWTP shrinks to a point. Thus, optimality of
free provision is more likely for goods for which heterogeneity in tastes is
limited.
An interesting corollary of proposition 2 is that it is never optimal to

allocate goods fully at random to the target population at a constant
strictly positive price—even though such an allocation mechanism is fea-
sible for universally desired goods. This is because a fully nonmarket al-
location can be justified only if the average Pareto weight strictly exceeds
16 When Fi is a degenerate (Dirac delta) distribution, there is no difference between as-
sortative and random matching.
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the weight on revenue; but if that is the case, then the unique optimal
price is 0.17
2. WTP-Revealed Inequality
So far, we have focused on cases in which random allocation is optimal
because the average Pareto weight on group i exceeds the weight on rev-
enue a. We have also argued that it matters that the good is universally
desired. Next, we ask whether the use of random allocation is limited
to these cases. The following result provides a negative answer, by fully
characterizing when the designer should resort to randomization for at
least some agents in group i:
Proposition 3 (WTP-revealed inequality). Suppose that (i) the aver-

age Pareto weight �li in some group i does not exceed the weight on rev-
enue a or (ii) the good is not universally desired for group i. Then, every
optimal mechanism provides random allocation to agents in group i
with WTP in some (nondegenerate) interval if and only if the social value
function ViðrÞ 5 aJiðrÞ 1 ΛiðrÞhiðr Þ is not nondecreasing.
Proposition 3 can also be viewed as providing necessary and sufficient

conditions for amarket solution to be optimal. The first assumption rules
out the circumstances that lead to the conclusion of proposition 1; we al-
ready know that assortative matching cannot be optimal in that case.
When the designer can give a lump-sum payment to agents in group i or
the good is not universally desired, optimality of fully assortative matching
reduces to checking the monotonicity of the function aJiðrÞ 1 Λiðr Þhiðr Þ,
which is the weighted sum of revenue and social-welfare-weighted infor-
mation rents of the agents.
Assuming differentiability, we can provide further economic intuition:

random matching will be used for a subset of agents as long as, for some
r, we have

a 1 Λ0
iðr Þhiðr Þ 1 ðΛiðr Þ 2 aÞh0

iðr Þ < 0:

Suppose that the inverse hazard rate is nonincreasing—an assumption
that is satisfied bymany commonly used distributions and implies that ef-
fectively assortative matching maximizes revenue. Then, random match-
ing will be optimal for agents with WTP close to r if either (i) the average
Pareto weight on types above r is sufficiently greater than the weight on
revenue or (ii) the Pareto weights are declining sufficiently quickly with
17 While it is tempting to criticize some existing social programs that charge a relatively
small price and rely on some form of rationing, it is important to emphasize that the result
applies only if the price is below everyone’s WTP (an empirical statement); besides, small
prices could be imposed for reasons other than raising revenue and screening that our
model does not capture (e.g., because of moral hazard concerns).
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r. That last condition can be interpreted as saying that, conditional on i,
WTP is strongly negatively correlated with the unobserved social welfare
weights; this is more likely to be true when the label i is not very informa-
tive of the agents’ underlying weights (e.g., when the label does not in-
clude any information about the agent’s income). Intuitively, if Pareto
weights are declining with WTP around r, the designer would like to give
more rents to agents with types just below r. This can be achieved by mak-
ing the allocation random in a (small) interval around r. Indeed, com-
pared to assortativematching, agents near the left end of that interval will
now receive a higher expected quality and hence—by the envelope for-
mula (5)—a higher expected utility. This modification generally reduces
both allocative efficiency and revenue, and hence the redistributive mo-
tive must be strong enough to justify random matching as optimal.
Proposition 3 is related to results in the literature. First, when there is

only one label, quality is binary (q 5 0 or q 5 1), and a 5 �l (the revenue
is redistributed as a lump-sum payment), our setting reduces to the one-
sided version of themodel ofDworczakⓡKominersⓡAkbarpour (2021),
who showed that competitive pricing (which is a special case of assortative
matching) may fail to be optimal when the Pareto weights have large dis-
persion. Under the assumption of a nonincreasing inverse hazard rate,
nonincreasing Pareto weights, and a ≥ �li, a simple calculation based
on proposition 3 shows that assortative matching is optimal in our frame-
work when a ≥ maxrfliðr Þ 2 Λiðr Þg. Thus, when revenue can be used
more flexibly, nonoptimality of a market allocation requires both a high
dispersion and a high level of the Pareto weights. Second, proposition 3
relates to results known from the analysis of the costly-screening model,
in which transfers are replaced by “money burning” (corresponding to
the case a 5 0). Among others, Hartline and Roughgarden (2008), Con-
dorelli (2012), and Chakravarty and Kaplan (2013) showed that the assor-
tative allocation maximizes unweighted agent surplus when the inverse
hazard rate is nondecreasing.18 Proposition 3 extends this condition to
the case when surplus is weighted by the Pareto weights: it is required that
Λi(r)hi(r)—the product of the inverse hazard rate at r and the average Pa-
retoweight on all types above r—is nondecreasing. At the same time, prop-
osition 1 implies that the conclusion of proposition 3 is true only under
the assumption that the good is not universally desired (i.e., only if
r i 5 0—an assumption that is made in the aforementioned papers).
18 Similar conditions were obtained as early as the work of McAfee andMcMillan (1992),
in a setting where bidders in an auction collude but cannot share payments among each
other; then, bidding in the auction becomes equivalent to burning utility (see also Bauer
2023 for a related model and result).
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B. How to Allocate Objects on the Basis of Labels
So far we have focused on allocation within individual groups. We now
focus on what the insights of section IV.A, combined with theorem 2, tell
us about the allocation of objects across the groups. We begin by charac-
terizing the structure of suppðF |

i Þ—the set of object qualities allocated to
group i—in simple cases in which the optimal allocation takes the same
form in all groups.
Proposition 4 (Across-group allocation with random matching).

Suppose that it is optimal to use a (fully) random allocation in each group
i ∈ I . Relabel the groups so that lower i 5 1, ::: , jI j corresponds to lowerÐ �ri
r
i
rliðrÞ dGiðrÞ. Then, there exists an optimal mechanism in which

suppðF |
i Þ 5 ½qi , qi11� \ suppðF Þ, for some fqigjI j11

i51 , with

min suppðF Þ 5 q1 ≤ q2 ≤ : : : ≤ q Ij j ≤ q Ij j11 5 max suppðF Þ:
Proposition 4 states that when all groups receive a random allocation

(the conditions for optimality of such an allocation are given in proposi-
tion 2), the optimal across-group allocation is particularly simple: groups
can be ordered, and groups higher in the ranking receive uniformly higher
qualities. Intuitively, under fully randomallocation, the designer’smarginal
value from allocating a unit of quality to group i is equal to

Ð �ri
r
i
rliðr Þ dGiðr Þ

and does not depend on the previously allocated qualities. Thus, in the
implementation of the greedy algorithm from section III, the designer
maximizes overall welfare by first allocating the lowest qualities to the
group with the lowest marginal social value, then allocating the lowest
of the remaining qualities to the group with the second-lowest marginal
social value, and so on. This is in sharp contrast to the optimal across-
group allocation when themarket mechanism is used within each group.
Proposition 5 (Across-group allocation with assortative matching).

Suppose that it is optimal to use effectively assortative matching in each
group i ∈ I . Relabel the groups so that lower i 5 1, ::: , jI j corresponds to
lower �ri. Then, there exists an optimal mechanism in which suppðF |

i Þ 5
½qi , �qi � \ suppðF Þ, for some fqi , �qigjI j

i51, with

�q1 ≤ �q2 ≤ : : : ≤ �q Ij j 5 max suppðF Þ:
Moreover, if the good is not universally desired for any group, then q

i 5
min suppðF Þ for all i ∈ I .
When assortative matching is used within groups (as is optimal under

the conditions given in proposition 3), we should in general expect non-
trivial overlaps in the quality levels allocated to different groups. In the
special case that all groups have the same support of WTP and the good
is not universally desired, it is in fact optimal for all groups to receive
the same range of qualities. Intuitively, under assortative matching, the
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marginal value of allocating an object to a given group i varies with how
many objects have already been allocated to that group. This is because
higher-WTP agents generate more value for the designer than lower-
WTP agents within the same group. Overlaps in qualities across groups i
and j occur whenever the highest-WTP agent within group i generates
more social value then the lowest-WTP agent within group j, and vice versa.
The social value generated by the lowest quality allocated to a given

group (which is received by the lowest-WTP agent under assortative
matching) is often 0; in fact, this is always the case for goods that are
not universally desired.19 If the good is not universally desired for any
group, then it is optimal for the designer to allocate the lowest-quality
goods to all groups.
A similar observation explains the conclusion about the highest qual-

ities. The marginal value of allocating the highest-quality object is deter-
mined by the value a�ri generated by the highest-WTP agent in group i.
Thus, the ranking of the upper bounds onWTP determines which groups
receive the highest-quality objects. Itmay seem surprising that these values
do not depend on the Pareto weights. In particular, if �ri is only slightly
higher than �rj , then group i receives at least some higher-quality objects
even if the designer puts no weight on the welfare of agents in group i
and a high weight on the welfare of agents in group j. To see why, note that
the utility of the highest type �ri is pinned down by the allocation to lower
types r < �ri within her group (see the envelope formula [5]). In particular,
the utility of the highest-WTP agent in an incentive-compatible mecha-
nismdoes not dependon thequality of the object that she receives—higher
quality translates only into a higher price. This implies that the allocation at
the top of the distribution affects only the designer’s revenue and hence
that the highest-quality object is allocated to the group i with the highest
upper bound on WTP �ri .
Finally, we analyze the structure of the across-group allocation when

groups differ in their internal allocation. To deliver the main insight in
the sharpest possible form, we focus on the case of two groups with oppo-
sitemodes of allocation.We consider amore general situation in the con-
text of our parametric example in section V.
Proposition 6 (Intermediate quality to a random-matching group).

Suppose that jI j 5 2 and that it is optimal to use effectively assortative
matching in group i 5 0 and fully random matching in group i 5 1.
19 Note a subtle difference: It is of course also true that agents with WTP 0 generate no
value for the designer when objects are allocated randomly. However, precisely because of
the randomness, the marginal value from the perspective of the object is positive. In con-
trast, under assortative matching, certain qualities are allocated to the lowest-WTP agents
deterministically and hence can have marginal value 0 to the designer.
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Then, there exist q ≤ �q such that suppðF |
1 Þ 5 ½q, �q� \ suppðF Þ, and

suppðF |
0 Þ 5 ð½0, q� [ ½�q, 1�Þ \ suppðF Þ. Moreover, assuming a nondegen-

erate distribution of quality, �q < 1 ifa�r0 >
Ð �r1
r
1
rl1ðr Þ dG1ðr Þ, and q > 0 when

ar 0 <
Ð �r1
r
1
rl1ðr Þ dG1ðr Þ.

In practice, when a certain group of eligible agents receives goods for
free, the quality of those goods tends to be lower than the quality in the
“market” (this lower qualitymay also take the formof rationing, i.e., some
agents receiving quality q 5 0). Proposition 6 indicates that this is typically
not optimal when eligibility is verifiable (via the label). Instead, under per-
missive conditions (e.g., when the good is not universally desired for
group 0), the goods the designer chooses to provide for free are those
of intermediate quality.
For intuition, note that when a random allocation mechanism is used

for group 1, the designer’s payoff depends only on the expected quality
allocated to that group. In contrast, when assortative matching is used,
the designer’s payoff depends on the dispersion in quality. The latter ob-
servation is particularly intuitive in the context of revenue maximization:
A revenue-maximizing seller chooses to decrease the allocation of the low
types in order to lower the information rents of the high types (Myerson
1981). In fact, it will often be optimal not to allocate some objects in
group 0, in which case the marginal value of quality is 0 up to some point
(in the greedy algorithm described in theorem 2). At the same time, the
marginal value of quality allocated to agents with high WTP in group 0
may be large—especially if �r0 is high. Thus, the designer allocates both
the lowest- andhighest-quality objects to group 0, leaving the intermediate-
quality objects for group 1.
V. Illustrative Example
In this section, we analyze an extended parametric example that illus-
trates and expands upon the insights presented in section IV. We addi-
tionally use the example to showcase a graphical solution method based
on the techniques developed in section III, providing mathematical in-
tuition behind our results.
A. The Setup
Suppose that in each group i, WTP is distributed uniformly on ½r i , r i 1 1�,
where r i ≥ 0. Pareto weights are given by liðr Þ 5 �liðgi 1 1Þðr i 1 1 2 rÞgi ,
for some gi > 21. Then, group i is characterized by the triple ðr i, �li, giÞ.
The lower bound on WTP r i ≥ 0 controls whether (and to what degree)
the good is universally desired. The average Pareto weight �li measures—in
relation to the fixed weight on revenue a—the strength of the designer’s
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redistributive preference toward group i.20 The parameter gi controls the
dispersion in Pareto weights within group i: when gi 5 0, the weights are
equal; when gi < 0, they are increasing in WTP; and when gi > 0, they
are decreasing in WTP, with the limiting case gi →∞ corresponding to
the Rawlsian objective (positive weight attached only to the agent with
the lowest utility within group i).
B. Optimal Within-Group Allocation
We first consider the optimal within-group allocation, fixing i ∈ I and
the CDF Fi of quality allocated to group i (assumed nondegenerate). Un-
der our assumptions, the function Ψi(x), as defined in theorem 1, is first
convex and then concave in the interval (0, 1], potentially with a jump at
0 (see fig. 1); it follows that the concave decreasing closure cd(Ψi)(x) lies
above the function Ψi(x) precisely in some interval of the form ½0, x|

i �,
where x|

i ∈ ½0, 1�. Thus, the structure of the optimal within-group mech-
anism follows immediately from theorem 1 and takes a particularly sim-
ple form.
Result. There exists x|

i ∈ ½0, 1� such that the optimal mechanism al-
locates qualities randomly to agents with r ≤ G21

i ðx|
i Þ and assortatively to

agents with r > G21
i ðx|

i Þ.
Economically, our first result shows that in-kind redistribution to the

lowest-WTP agents may coexist with assortative matching at the top of
the distribution. This is a manifestation of the trade-off between redis-
tribution and efficiency. Note that both fully random allocation and fully
assortative matching are special cases, with x|

i 5 1 and x|
i 5 0, respec-

tively. While we do not expect the simple structure to remain optimal
in general (beyond the example, the optimal allocation may “alternate”
between random and assortative matching multiple times), we expect
the forces that determine x|

i —the fraction of objects allocated by a non-
market mechanism—to be more robust. In the remainder of this subsec-
tion, we focus on studying how the optimal cutoff x|

i depends on the
primitives of the model.
1. When Lump-Sum Payments Are Not Available
We first assume that �li ≥ a, so that label i identifies agents treated prefer-
entially by the designer but a direct lump-sum transfer may not be feasi-
ble (when �li > a). To find x|

i , we solve the equation ΨiðxÞ 2 Ψ0
iðxÞx 5

Ψið0Þ, using the fact that the concave decreasing closure cd(Ψi) coincides
with Ψi at 0 and is tangent to Ψi at x|

i (if x|
i < 1). While a closed-form
20 Note that by construction, �li is equal to the expected value of li(r) with respect to the
distribution of WTP r in group i.
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solution is not available in general whenΨi has a jump at 0, we can calculate
x|
i in the special case when there is no dispersion in the Pareto weights.21

Result. When �li ≥ a and gi 5 0, the fraction of objects allocated
randomly in the optimal mechanism is

x|
i 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r ið�li 2 aÞ
2a 2 �li

s
if that expression is well defined and below 1,

1 otherwise:

8>><
>>:

In line with proposition 1, a nonmarket allocation is used for the low-
est qualities of the good when the good is universally desired (r i > 0) and
the designer attaches a strictly higher weight to group i than to revenue
(�li > a). By the definition of Ψi in theorem 1, these two assumptions to-
gether are equivalent toΨi exhibiting a jump at 0. Then, even if the func-
tion Ψi is concave on (0, 1], the concave decreasing closure cd(Ψi) lies
above Ψi in some nondegenerate interval [0, x|

i ] (see the top-left panel
of fig. 1). Moreover, the number of objects allocated randomly is increas-
ing in the size of the jump and hence increasing in both r i and �li.
Next, we ask when a fully nonmarket solution is optimal (x|

i 5 1). This
possibility is illustrated in the top-right panel of figure 1: The jump of Ψi

at 0 is so large that the concave decreasing closure cd(Ψi) lies everywhere
FIG. 1.—Illustration of the within-group solution. The function Ψi (solid line) and its
concave decreasing closure cd(Ψi) (dashed line when different from Ψi).
21 This special case does not significantly constrain our analysis in terms of economic insight
because the intuition behind proposition 1 does not rely on dispersion in Pareto weights.
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above Ψi. Since the second assumption in proposition 2 always holds in
our example, condition (9) is both necessary and sufficient.
Result. Fully random matching is optimal (x|

i 5 1) if and only if

�li ≥ a
r i 1 1

r i 1 1= 2 1 gið Þ :

In particular, �li > a is necessary for full randomization to be optimal,
while a higher r i makes the condition easier to satisfy (in particular, �li > a

becomes sufficient when r i is high enough); this is intuitive because higher
�li 2 a and r i increase the size of the jumpofΨi at 0. Perhapsmore surpris-
ingly, a high concentration of weights on the lowest-WTP agents (high gi)
makes the conditionmore difficult to satisfy. The reason is that—holding
the average welfare weight fixed—higher gi implies lower weights on
agents with high WTP. Then, the motive to maximize revenue dominates
the motive to maximize welfare for high types, and the designer optimally
uses assortative matching at the top of the distribution. This intuition sug-
gests that free provision of goods can be optimal only when the target pop-
ulation is relatively uniform, perhaps because the label identifying the
group is highly informative of the characteristics that determine the social
welfare weights.
2. When Lump-Sum Payments Are Available
Next, we consider the case a ≥ �li, when group i is not preferentially treated
(or a label-contingent lump-sum payment is feasible), as in the setting of
proposition 3.
We first observe that when some agents in group i have low WTP (r i is

low) and the weight on revenue a is large, some objects may be discarded
in the optimal mechanism. In our formulation, free disposal of qualities
below the xith quantile is optimal when Ψi(x) is increasing in ½0, xi � (see
the bottom-left panel in fig. 1). The cutoff xi is positive if and only if
aðr i 2 1Þ 1 �li < 0. The reason for this is familiar from Myerson (1981):
discarding some objects raises revenue. Since the revenue motive for dis-
carding objects is a well-known property, for the remainder of this section,
we focus on cases when free disposal is not used.
When lump-sum payments to group i are feasible, Ψi does not have a

jump at 0, and we can solve for the cutoff x|
i explicitly. The cutoff is pos-

itive if and only if the function Ψi is convex in some initial interval; oth-
erwise, the function Ψi is concave everywhere, and hence it coincides
with its concave closure, making fully assortative matching optimal (see
the bottom-right panel of fig. 1).
Result. When a ≥ �li , the fraction of objects allocated randomly in

the optimal mechanism is
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x|
i 5 1 2 min 1,

2a
�liðgi 1 1Þ


 �1=g� �
:

It follows that fully assortative matching is optimal if and only if 2a ≥
�liðgi 1 1Þ. When 2a < �liðgi 1 1Þ, the lowest-quality objects are allocated
for free. Consistent with our discussion in section IV, the use of a
nonmarket mechanism is supported by both the level and dispersion
of the Pareto weights in group i. However, there is a sense in which dis-
persion plays a more important role. First, sufficiently high dispersion (as
controlled by gi) is sufficient for making it optimal to allocate the lowest-
quality objects for free. Second, some degree of dispersion (with higher
weights on agents with low WTP) is necessary under our assumption that
a ≥ �li (in fact, we need gi > 1). In particular, when there is no dispersion
in Pareto weights, assortative matching is always optimal.
An interesting property of the optimal mechanism in our example is

that—whenever label-contingent lump-sum payments are feasible—as-
sortativematching is used at the top of the distribution ofWTP; in appen-
dix C, we show that this is a general property, at least as long as Pareto
weights are nonincreasing in WTP. Intuitively, under these assumptions,
the revenue-maximizing motive dominates the welfare-maximizing mo-
tive for agents with high WTP.
Finally, we ask how the level of inequality revealed by WTP (dispersion

of Pareto weights) influences the fraction of objects allocated by a non-
market mechanism. It turns out that the relationship is nonmonotonic,
with the use of nonmarket allocation maximized at an intermediate level
of inequality.
Result. When a ≥ �li , the fraction of objects allocated randomly in

the optimal mechanism is zero (x|
i 5 0) both when gi 5 0 and (in the

limit) when gi →∞. The fraction of objects allocated randomly is maxi-
mized at the unique positive gi that solves the equation22

exp gi= gi 1 1ð Þð Þ
gi 1 1

5
�li

2a
:

The nonmonotonicity exhibited in the example is a general property,
as we show in appendix C. For intuition, consider the case when gi →∞
(so that we approach the Rawlsian objective). Even though the optimal
mechanism uses random matching for the lowest types, the randomiza-
tion region actually vanishes as the weights become increasingly skewed.
22 When a 5 �li , the fraction of objects allocated randomly is maximized when gi is
slightly above 3 and is equal to approximately 20%. As a grows, the maximal fraction of
objects allocated randomly declines, while the level of inequality required to achieve it
grows. For example, when a 5 2�li , the maximal fraction is around 10% and is achieved
when gi is slightly below 9.
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The average Pareto weight is fixed at a level below the weight on revenue,
so as the weight on the lowest-WTP agents increases, the weight on all
higher-WTP agents converges to 0. Thus, themotive tomaximize revenue
eventually dominates for almost all agents, whichmakes assortativematch-
ing increasingly attractive, and optimal in the limit.23
C. Optimal Across-Group Allocation
In this subsection, we use the properties of the optimal within-group so-
lution to solve a simple instance of an optimal across-group allocation.
We suppose that there are two groups, labeled i 5 0 and i 5 1, where
themain distinction is that �l1 > a > �l0. That is, group i 5 1 is poorer, dis-
advantaged, or for some other reason treated preferentially by the de-
signer. Revenue is used to finance a lump-sum payment to all agents. Ad-
ditionally, we assume that r 0 ≥ r 1 > 0, that is, that the good is universally
desired and group 0 has higher WTP. The distribution of quality F has a
strictly positive density on [0, 1].
We begin with a simple result that illustrates proposition 4.
Result. Suppose that the designer uses a fully random allocation in

both groups. Then, in the optimal across-group allocation, the group i with
the higher �li ½r i 1 1=ðgi 1 2Þ� receives uniformly higher quality.
The straightforward comparative static in the preceding result is that

higher �li makes it more likely that group i receives higher-quality objects.
The term r i is a sufficient statistic for the distribution of WTP in our para-
metric example, and it captures the fact that higher WTP means that al-
locating an object ismore valuable. The 1=ðgi 1 2Þ termmeasures the im-
portance of the distribution of Pareto weights within a group. Group i is
more likely to receive priority over the other group if the Pareto weights
within that group are more skewed toward agents with high WTP. This is
because agents with the highest WTP necessarily receive the highest util-
ity among all agents in their group; if they also have a high Pareto weight,
then the designer can generate more social value from that group.
From now on, we assume that 2a < �l0ðg0 1 1Þ, so that an effectively as-

sortative matching is optimal within group 0. In group 1, meanwhile, we
know that it is optimal to allocate qualities below the x|

0 th quantile for free
at random and the remaining qualities assortatively.
Figure 2 illustrates, qualitatively, how the greedy algorithm from the-

orem 2 produces an optimal across-group allocation. Qualities are allo-
cated from lowest to highest (as indicated in the bottom line in the
23 While the designer could maximize the welfare of the lowest-WTP agent by giving her
a random quality for free, this would necessarily decrease revenue to 0. Since a ≥ �li , even
though the weight on some individuals diverges to ∞, the revenue motive dominates the
welfare motive in expectation over all types.
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figure), with the “next” level of quality allocated to the group with a
smaller (absolute value of the) slope of the function cd(Ψi). Intuitively,
the slope of cd(Ψi) at x captures the marginal value of quality, given that
a mass x of qualities has been already allocated according to the optimal
within-group mechanism.
For intuition, it is helpful to think of a being large relative to �l0, so that

we can approximately treat the designer as maximizing revenue in
group 0. In particular, when aðr 0 2 1Þ 1 �l0 < 0, the slope of cd(Ψ0) is
zero in some initial interval, and the optimal mechanism for group 0 uses
free disposal. Then, the lowest-quality objects are allocated to group 0,
since they are optimally discarded anyway. More generally, the marginal
value of allocation to low-WTP agents is low when revenue is the domi-
nant motive for the designer. Allocation of qualities to group 0 continues
until the slope of cd(Ψ0) equalizes with the slope of cd(Ψ1) at 0, as indi-
cated by point A in figure 2.
The next “batch” of qualities is allocated entirely to group 1 (the seg-

ment BC in fig. 2). This is because the lowest qualities in group 1 are al-
located randomly; as a result, the marginal value of allocation is constant
in the mass of allocated objects in the random-allocation region, as re-
flected by the constant slope of cd(Ψ1) in the interval from B to C.
As soon as assortative matching “kicks in” in group 0 (which happens

at point C), the designer optimally splits qualities across both groups.
For any quality level q in this region, the fraction of objects allocated to
each group is between 0 and 1 and such that themarginal values are always
equalized across the groups.
FIG. 2.—Illustration of the across-group solution. The graph depicts cd(Ψi) for both
groups i 5 0, 1, while the line below the graph depicts the resulting allocation of quality.



redistributive allocation mechanisms 1863
Finally, for the configuration in figure 2, the highest qualities are al-
located to group 0. The reason is that the slope of cd(Ψ1) at 1 is equal to
the slope of cd(Ψ0) at some interior point (point D in the figure); this im-
plies that when the designer optimally allocates the last unit of quality to
group 1, there are agents in group 0 who generate even higher marginal
value—they must receive the highest quality under assortative matching.
The following result summarizes our reasoning and gives conditions

under which the various regions we described are nondegenerate:
Result. There exist cutoffs 0 ≤ q < q̂ < �q ≤ 1 such that, in the opti-

mal across-group allocation, objects of quality q ≤ q are allocated to group
0 (with potentially some objects discarded), objects of quality q ∈ ½q, q̂� are
allocated to group 1, objects of quality q ∈ ½q̂, �q� are allocated to both
groups (in the sense that each q in this interval is shared by both groups),
and objects of quality q ≥ �q to group 0. Additionally, q > 0 when aðr 0 2
1Þ 1 �l0 < 0, and �q < 1 when r 0 > r 1.
Finally, to illustrate proposition 6, we suppose that a fully random allo-

cation is optimal for group 1.Optimality of fully randommatchingmeans
that cd(Ψ1) is affine, and its slope is constant. In figure 2, this would cor-
respond to the line segment BC being “stretched” to the entire interval
[0, 1] and the curved segment CE⌢ being removed. In this case, the greedy
algorithm allocates all qualities to group 1 in one “batch.” In contrast,
group 0 receives extremal qualities.
VI. Market Design Implications
The optimal mechanism in our framework is always a combination of
(i) random matching, which can be seen as a form of in-kind redistribu-
tion, and (ii) assortative matching, corresponding to the allocation that
would arise in a competitive market equilibrium. Random matching can
be optimal only when there is enough dispersion in the welfare weights to
merit the allocative distortion—and even then, for random matching to
be optimal, the designer needs to be able to identify sufficient informa-
tion about the inequalities in agents’ unobserved social welfare weights
to be able to target the redistribution properly. The designer can observe,
directly or through the mechanism, the label and the WTP. Those give
rise to two distinct paths for in-kind redistribution to be optimal:

1. Label-revealed inequality.—If some label i identifies a group of agents
that have a higher welfare weight on average than the weight on
revenue a, then proposition 1 shows that in-kind redistribution be-
comes optimal when the good being allocated is universally desired.
Food stamp programs serve as an illustration. Group i can be de-

fined by a set of verifiable eligibility criteria—such as low income—
that are strongly correlated with what society associates with those
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most in need. For various reasons, itmight be impractical, politically
infeasible, or costly to give monetary transfers to group i, so that
a < �li may hold. Then, since food (defined broadly enough) is a
universally desired good, in-kind redistribution can be justified by
our proposition 1.We can furthermore ask whether the simple form
that many of these programs take—providing an undifferentiated
food stamp free of charge—is optimal. Condition (9) in proposi-
tion 2 is sufficient (and almost necessary) for optimality of providing
a constant quality at a zero price. This condition is more likely to
hold when the dispersion in WTP is low.24 This may indeed be the
case in the context of food aid: Food stamp programs tend to be ad-
dressed to relatively poorhouseholds that donot vary significantly in
their ability to pay. Moreover, when the recipients have discretion in
choosing individual food items, differences in WTP due to dietary
preferences should also be small. Thus, our framework provides a
justification for allocating the same food stamp free of charge to ev-
eryone who is eligible.
In contrast, consider the example of public housing programs. In

some countries, as many as a third of households are eligible for
some form of housing assistance, implying that the ability (and
hence willingness) to pay of some recipients could be quite large.25

In such cases, in light of proposition 2, a fully random allocation is
unlikely to be optimal. A superior solution, based on proposition 1
and illustrated in section V, is to provide the lowest-quality houses
at a minimal price in a lottery and use a price gradient for granting
access to higher-quality housing. Using a low price for the lottery en-
sures that even those who opt for higher quality can be charged a
below-market price. At the same time, the price gradient ensures a
more efficient allocation and raises more revenue.

2. WTP-revealed inequality.—The second rationale for using in-kind re-
distribution in our framework (proposition 3) is whenWTP reveals
information about the welfare weights. In general, differences in
WTP may reflect both differences in idiosyncratic preferences and
differences in ability to pay. For markets in which there is strong
negative correlation between WTP and the welfare weights, the de-
signer can use the information revealed by agents’ behavior to spe-
cifically target those individuals within a group who are likely to
have a high welfare weight.
For example, a patient who has a lowWTP for an important med-

ical treatment is more likely to be poor and thus to have a high
24 In fact, as �ri approaches r i , condition (9) reduces to the requirement that a < �li .
25 Van Dijk (2019) notes that “34% of Dutch households, 26% of Austrian households,

and 19% of French households live in subsidized housing.”
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expected welfare weight. In such cases, the designer can redistrib-
ute by introducing a reduced-price lottery for low-quality health
care (e.g., providing health care services with higher waiting times)
in order to separate low- and high-WTP agents—and subsidize the
former via a reduced price.

Our framework also identifies two distinct forces supporting the use of
market mechanisms even in the presence of redistributive concerns:

1. The revenue motive.—As predicted by proposition 2, assortative
matching will be used for at least some agents as long as the weight
on revenue a exceeds the average Pareto weight �li in a given group i.
Moreover, by proposition 3, for (Myerson-)regular distributions of
WTP, the fraction of objects allocated using themarketmechanism
increases with a. A high a occurs naturally when revenue is a driving
objective unto itself (e.g., when the marketplace owner is a private,
for-profit institution). However, the weight on revenue can also be
high in public contexts in which it is possible to subsidize selected
groups of agents via direct lump-sum transfers or when the designer
uses the revenue to fund an outside cause that is socially valuable.
For example, consider a government designing an auction to allo-
cate goods such as spectrum licenses or oil and gas leases to firms.
Because the social value of a dollar funding the government budget
is probably higher than the marginal social value of giving a dollar
to the firms participating in the auction, assortativematching is typ-
ically optimal, perhaps with some restriction on supply to further
increase revenue.
The same force behind optimality of assortativematching applies

in any situation in which direct label-specific lump-sum payments
are feasible (so that a ≥ �li for any group i). For example, if it is fea-
sible to give cash transfers to those eligible for public housing (per-
haps in the form of tax credits), then there is an argument against
using lotteries to allocate public housing—we can do better by allo-
cating assortatively at least at the topof thedistributionof WTPandus-
ing the resulting revenue to fund monetary transfers to all eligible
agents.

2. The efficiency motive.—Assortative matching is optimal for maximiz-
ing the efficiency of the allocation—and this force works in favor of a
market allocation even when the weight on revenue a is strictly below
the average Pareto weight �li. Efficiency becomes the dominant force
when Pareto weights do not vary too much with WTP, conditional
on the label i. Proposition 3 implies that a fully assortative matching
becomes optimal when a ≥ maxrfliðrÞ 2 Λiðr Þg, which can be true
even for very low a when there is little dispersion in li(r).
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Low dispersion in li(r) can arise in two cases: (i) when the designer
does not have strong redistributive preferences to begin with (there
is little dispersion in the unobserved welfare weights) or (ii) when
WTP is not correlated with the underlying welfare weights, condi-
tional on the label. Observation ii helps explain why a market al-
location is desirable for most goods and services even when the de-
signer has strong preferences for redistribution. Agents’ needs are
unlikely to be strongly correlated with WTP for goods that are rela-
tively cheap (affordable, at least in small quantities, to most people)
and whose value depends heavily on tastes. Additionally, the residual
correlation between WTP and the unobserved welfare weights de-
creases when more information becomes available in the form of
labels (see the interpretation of themodel in sec. II). For example,
if a country provides free health care to eligible citizens, it becomes
less likely that the low WTP in the noneligible group reflects ad-
verse social or economic circumstances, since these circumstances
would likely be partly captured by the label. Hence, using in-kind
redistribution to address label-revealed inequality should often
be expected to coexist with a market allocation to the populations
that are not being targeted for redistribution.
VII. Concluding Remark
Focusing on an objective function that assigns arbitrary welfare weights to
market participants sets this work apart from the standard mechanism
design paradigm. Indeed, while the mechanism design literature has de-
veloped an impressive framework for designing revenue-maximizing auc-
tions and allocatively efficient mechanisms, there has been far less focus
on how to use those same tools to understand the ways in which the struc-
ture of optimal mechanisms responds to redistributive goals. Our paper is
thus one of relatively few attempts thus far usingmechanism design to give
guidance to real-world market designers about how to optimally structure
market-level redistributive systems. We hope to see more work devoted to
this problem.
Appendix A

Proofs of the Results in the Main Text

A1. Proof of Theorem 1

Because the within-group problem can be solved for each group i separately, we
fix i ∈ I and drop the subscripts i to simplify notation. We prove the theorem
under the assumption that the designer maximizes a general objective function
of the form
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ð�r

r
V ðr ÞQ Γðr Þ dGðr Þ 1 vU (A1)

for some upper semicontinuous function V :½r , �r �→R and some constant v ∈ R.
Fixing the CDF of available quality F, we call an expected quality schedule

Q : ½r , �r �→ ½0, 1� feasible if Q 5 Q Γ for some Γ : ½r , �r �→ ΔðQ Þ and there exist trans-
fers t such that (Γ, t) is a feasible mechanism. Given two CDFs F ,G :½a, b�→ ½0, 1�,
we say that F is a mean-preserving spread (MPS) of G ifð t

a

F ðxÞ dx ≥
ð t

a

GðxÞ dx, 8 t ∈ ½a, b�,

with equality for t 5 b. We say that F first-order stochastically dominates G if F ðxÞ ≤
GðxÞ for all x ∈ ½a, b�. The following lemma describes all feasible expected quality
assignments, assuming no free disposal:

Lemma 1. If F is the CDF of available qualities, then Q(r) is a feasible assign-
ment of expected qualities (with no free disposal) if and only if Q ðr Þ 5 ΦðGðr ÞÞ,
where Φ : ½0, 1�→ ½0, 1� is a nondecreasing, left-continuous MPS of F21.

Proof. Since F(q) is a CDF, we can apply Strassen’s theorem (see theorem 3.4.2
(a) of Müller and Stoyan 2002): a CDF �F ðqÞ is a distribution of posterior means of
a random variable distributed according to F if and only if F is an MPS of �F . More-
over, by the usual argument, the incentive-compatibility constraint (3) implies
that the assignment of expected qualities must be nondecreasing. This monoto-
nicity condition uniquely pins downQ(r), given �F andG: �F ðqÞ is the (normalized)
mass of objects of quality q or less available to agents; this mass must be allocated
to agents with WTP r or lower; therefore, for any q, there exists r such that �F ðqÞ 5
Gðr Þ, and it follows that

Q ðrÞ 5 �F 21ðGðrÞÞ:
Finally, we claim that a functionΦ is equal to �F 21 for some feasible �F if and only if
Φ satisfies the conditions of the lemma. That is,

�F is a CDF on ½0, 1� and F is an MPS of �F ⇔

�F 21: ½0,1�→ ½0,1� is nondecreasing and left-continuous and �F 21 is an MPS of F ;
(A2)

this follows from lemma 1 of Brooks and Du (2021). QED
The proof of lemma1 can beunderstood through its connection to information

design: we can treat F as the prior distribution of a random variable X (quality);
Strassen’s theorem implies that a distribution �F of posterior means of X can be in-
duced from the prior F (under some signal when X is treated as a state variable) if
and only if F is an MPS of �F . Hence, in our assignment problem, mean-preserving
contractions of the distribution F describe all feasible distributions of expected
quality. Moreover, incentive-compatibility constraints imply that there is a unique
assignment of expected qualities to types because the assignment must be mono-
tone in the WTP r.

Because the function Φ(q) from lemma 1 is left-continuous, its value at 0 is not
pinned down. This is a reflection of the fact that the designer’s expected payoff



1868 journal of political economy
from the mechanism does not depend on the allocation to a measure-zero set of
types, in particular, on the allocation of type r . However, the allocation for type r ,
Q ðr Þ, appears in the constraint defining the nonnegative-transfers condition.
This constraint is most permissive when Q ðr Þ is set to its maximal feasible level,
which isQ ðr1Þ (sinceQmust be nondecreasing). (Here, and hereafter, we denote
f ðx1Þ 5 limy ↘ x f ðyÞ.) Because it is convenient to keep Φ left-continuous also at 0,
we extend the function Φ by assuming that ΦðxÞ 5 0 for all x ≤ 0, and then the
nonnegative-transfers condition becomes U ≤ rΦð01Þ.

Given lemma 1, we can write the problem of maximizing function (A1) under
no–free disposal as

max
Φ

ð�r

r
V ðr ÞΦðGðr ÞÞ dGðr Þ 1 max 0, vf grΦð01Þ

� �
,

subject to

Φ is an MPS of F 21:

Indeed, note that when v ≤ 0, it is optimal to choose U as low as possible, and
hence U 5 0 in the optimal mechanism (U ≥ 0 by individual rationality). In
contrast, when v > 0, the nonnegative-transfers condition implies that it is opti-
mal to set U to its maximal feasible level rΦð01Þ.

Integration by parts and by substitution yields

ð�r

r
V ðr ÞΦðGðr ÞÞ dGðrÞ 5

ð1

0

ð1

t

V ðG21ðxÞÞ dx
� �

dΦðtÞ:

Whenever we write
Ð
f ðxÞ dΦðxÞ for somemeasurable function f, wemean the Le-

besgue integral with respect to the j-additive measure mΦ defined by mΦð½a, b�Þ 5
Φðb1Þ 2 ΦðaÞ, in particular, mΦðfagÞ 5 Φða1Þ 2 ΦðaÞ. Under this convention,
and recalling that ΦðxÞ 5 0 for x ≤ 0, we can also write

Φð01Þ 5
ð1

0

1 t50f g dΦðtÞ:

Then, we can write function (A1) as

ð1

0

ð1

t

V ðG21ðxÞÞ dx 1 max 0, vf gr1 t50f g

� �
dΦðtÞ:

Using the definition of Ψ from theorem 1, we conclude that the objective func-
tion is

Ð 1

0 ΨðxÞ dΦðxÞ; problems of this form admit an easy-to-describe solution.
Lemma 2. Consider the problem

max
Φ :Φ is an MPS of Φ0

ð1

0

ΨðxÞ dΦðxÞ
� �

,

where Ψ(x) is an upper semicontinuous function and Φ0 is given. The value of
the problem is

Ð 1

0 coðΨÞðxÞ dΦ0ðxÞ, and the solution is given by
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Φ|ðxÞ 5

ðb

a

Φ0ðxÞ dx
b 2 a

if x ∈ ½a, b� and ½a, b� is a maximal interval on

which coðΨÞ is affine,
Φ0ðxÞ otherwise,

8>>>><
>>>>:

for almost all x.
Proof. For any Φ, we haveð1

0

ΨðxÞdΦðxÞ ≤
ð1

0

coðΨÞðxÞ dΦðxÞ:

Moreover, the function on the right-hand side of the inequality is maximized at
Φ 5 Φ0 because co(Ψ)(x) is a concave function. It follows that the value of the
problem in the lemma is bounded by

Ð 1

0 coðΨÞðxÞ dΦ0ðxÞ. We show that this upper
bound can be achieved. Consider the candidate solution Φ|(x) from the state-
ment of the lemma. First, this function is feasible (by Gentzkow and Kamenica
2016). Moreover, suppðΦ|Þ⊆fx :ΨðxÞ 5 coðΨÞðxÞg, and on that set,Φ| 5 Φ0. In-
deed, whenever ΨðxÞ < coðΨÞðxÞ, x must lie in the interior of an interval in which
co(Ψ)(x) is affine, and hence, by definition, Φ|(x) is constant in that region.
Thus,

Ð 1

0 ΨðxÞ dΦ|ðxÞ 5 Ð 1

0 coðΨÞðxÞ dΦ0ðxÞ. QED
The form of the solution is consistent with the concurrent findings of Kleiner,

Moldovanu, and Strack (2021), who derive general properties of extreme points
that emerge as solutions to problems of the form considered in the lemma. The
maximization problem in lemma 2 can also be seen as analogous to a Bayesian
persuasion problem in which the designer’s preferences over posterior beliefs
depend only on the posterior mean (see Kolotilin 2018 and Dworczak and Mar-
tini 2019) with a key difference: the MPS condition is flipped, requiring the so-
lution Φ to be an MPS (rather than a mean-preserving contraction) of the prior
Φ0. This makes the problem very easy to solve by finding a concave closure of the
objective function.

Lemmas 1 and 2 immediately imply that the value of the maximization prob-
lem under no–free disposal is given byð1

0

coðΨÞðxÞ dF 21ðxÞ 5
ð1

0

coðΨÞðF ðqÞÞ dq,

where the equality follows from integration by substitution. Moreover, a solution
is given by Q |ðr Þ 5 Φ|ðGðrÞÞ, where Φ| is described in lemma 2.

Next, we modify the solution to allow for free disposal. Allowing for free dis-
posal is equivalent to allowing for “downward” first-order stochastic dominance
(FOSD) shifts in the distribution of expected quality allocated to agents. That is,
Q(r) is a feasible expected-quality schedule with free disposal if Q ðr Þ 5 �ΦðGðr ÞÞ
for some �Φ ≤ Φ, where Φ is an MPS of F21 (see lemma 1). Note that �Φ dominates
Φ in the FOSD order because the FOSD relation is reversed by taking the inverse
of the CDFs (and both �Φ andΦ are inverses of the CDFs of the expected quality).
Therefore, to derive the optimal expected-quality schedule under free disposal
from the corresponding solution without free disposal, it is enough to solve an
optimization problem of the following form:
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Lemma 3. Consider the problem

max
Φ

ð1

0

coðΨÞðxÞ dΦðxÞ,

subject to

ΦðxÞ ≤ Φ|ðxÞ,
where Φ|(x) is the solution given in lemma 1. The value of the problem isÐ 1

0 cdðΨÞðxÞ dΦ|ðxÞ, and the solution is given by

Φ||ðxÞ 5 Φ|ðxÞ1 x≥x|f g

for almost all x, where [0, x|] is the maximal interval on which the concave de-
creasing function cd(Ψ) is constant.

Proof. By definition of x|, the function cd(Ψ)(x) is constant and equal to
co(Ψ)(x|) on [0, x|] and coincides with co(Ψ)(x) otherwise. On one hand, we
have for any feasible Φ,ð1

0

coðΨÞðxÞ dΦðxÞ ≤
ð1

0

cd Ψð ÞðxÞ dΦðxÞ ≤
ð1

0

cd Ψð ÞðxÞ dΦ|ðxÞ,

where the first inequality follows from the fact that coðΨÞ ≤ cdðΨÞ, and the sec-
ond follows from the fact that cd(Ψ) is nonincreasing and Φ dominates Φ| in the
FOSD order. On the other hand, if we define Φ|| as in the statement of the
lemma, then we haveð1

0

co Ψð Þ xð ÞdΦ||ðxÞ 5

ðx|

0

coðΨÞðxÞ dΦ||ðxÞ 1
ð1

x|

coðΨÞðxÞ dΦ||ðxÞ

5 coðΨÞðx|ÞΦ|ðx|Þ 1
ð1

x|

cd Ψð ÞðxÞ dΦ|ðxÞ

5

ð1

0

cd Ψð ÞðxÞ dΦ|ðxÞ

by the properties of co(Ψ), cd(Ψ), andΦ||(x). Thus,Φ|| achieves the upper bound
and hence is a solution to the problem described in lemma 3. QED

With lemma 3, theorem 1 follows directly from lemma 1: the value of the prob-
lem is ð1

0

cd Ψð ÞðxÞ dΦ|ðxÞ 5
ð1

0

cd Ψð ÞðxÞ dF 21ðxÞ 5
ð1

0

cd Ψð ÞðF ðqÞÞ dq,

where the last equality follows from integration by substitution. The optimal so-
lution is given by an expected-quality schedule

Q |ðr Þ 5 Φ||ðGðr ÞÞ 5 Φ|ðGðr ÞÞ1 Gðr Þ≥x|f g 5 Φ|ðGðr ÞÞ1 r≥G21ðx|Þf g,

where Φ| is as described in lemma 1. Finally, the choice of the optimal U was de-
scribed in the discussion leading up to lemma 2. QED
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A2. Proof of Theorem 2

We solve the problem (7)–(8) by solving a relaxed problem in which the con-
straint that Fi(q) is a CDF is dropped and then verifying that the solution of
the relaxed program is feasible. The relaxed program is to solve for the optimal
Fi(q) for every q ∈ Q separately:

max
0≤xi≤1 o

i∈I

micd Ψið ÞðxiÞ
� �

, (A3)

subject to o
i∈I

mixi 5 F ðqÞ: (A4)

This program can be solved using standard Lagrangian techniques (constraint
qualification holds trivially in our problem). Fix q ∈ Q . There exists a Lagrange
multiplier,26 which we denote by L(q), such that the optimal x|

i maximizes
oi∈Imi ½cdðΨiÞðxiÞ 2 LðqÞxi � while satisfying the constraint (A4). Because the La-
grangian is concave, the first-order condition is both necessary and sufficient.
Let X |

i ðqÞ be the set of points satisfying the first-order condition: X |
i ðqÞ 5

fx : cdðΨiÞ0ðxÞ 5 LðqÞg whenever this set is nonempty; otherwise, X |
i ðqÞ 5 f0g

if cdðΨiÞ0ð0Þ < LðqÞ, and X |
i ðqÞ 5 f1g if cdðΨiÞ0ð1Þ > LðqÞ. By the preceding argu-

ment, we know that there exists a selection x|
i ∈ X |

i ðqÞ such that condition (A4)
holds. Moreover, because each cd(Ψi) is concave and continuous, we know that
each X |

i ðqÞ is a closed interval (potentially a singleton).
To prove the theorem, it remains to show that there exists a selection F |

i ðqÞ
from each X |

i ðqÞ that is nondecreasing (then, it can be modified on a measure-
zero set of points to make it into a CDF; note that it is guaranteed by the con-
straint [A4] that each F |

i is 0 at 0 and 1 at 1).
Because the constraint (A4) is increasing in q, it follows that the Lagrangemul-

tiplier L(q) is a nonincreasing function of q. Moreover, the sets X |
i ðqÞ are nonde-

creasing in the strong-set order by concavity of cd(Ψi). Define a vector function

Cðq, aÞ
5 ½ð1 2 aÞmin X |

1 ðqÞ 1 amax X |
1 ðqÞ, ::: , ð1 2 aÞmin X |

Ij jðqÞ 1 amax X |
Ij jðqÞ�:

By definition, for each q, oiCiðq, 0Þ ≤ F ðqÞ, while oiCiðq, 1Þ ≥ F ðqÞ. By continuity,
there exists a|(q) such that oiCiðq, a|ðqÞÞ 5 F ðqÞ (moreover, the values of
Ciðq, a|ðqÞÞ are uniquely pinned down, even if a|(q) is not). We can now define
F |
i ðqÞ as Ciðq, a|ðqÞÞ. By direct inspection and the strong-set order property of
X |

i ðqÞ, each F |
i ðqÞ is nondecreasing, which finishes the proof once we set

V minðqÞ 5 2LðqÞ. QED

A3. Proofs of the Results in Section IV

A3.1. Proof of Proposition 1

The proof is immediate from theorem 1. The assumptions of proposition 1 en-
sure that there is an upward jump in Ψi at 0, and therefore cd(Ψi)(x) must be
26 In case there are multiple Lagrange multipliers, we pick the largest one.
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affine on [0, x], for some small enough x. (Of course, when cd(Ψi)(x) is constant
for small x, it is possible that types r ≤ r |i do not receive any objects; however, this
is still random matching according to our definition; see also remark 1.) QED

A3.2. Proof of Proposition 2

When Fi is a nondegenerate distribution, by theorem 1, full randomization is op-
timal if and only if cd(Ψi) is affine, which is true if and only if

ΨiðxÞ ≤ ð1 2 xÞΨið0Þ 1 xΨið1Þ
for all x > 0. We have

Ψið0Þ 5 max 0, a 2 �li

� �
r i 1

ð�ri

r
i

tliðtÞ dGiðtÞ:

Using the fact that Ψið1Þ 5 0, we can write the condition as, for all r > r i ,

ΨiðGiðr ÞÞ ≤ ð1 2 Giðr ÞÞ max 0, a 2 �li

� �
r i 1

ð�ri

r
i

tliðtÞ dGiðtÞ

 �

: (A5)

To see that this implies a < �li , note that by dividing both sides by 1 2 Giðr Þ, using
the expression (6), and taking the limit as r → �ri , we get

a�ri ≤ max 0, a 2 �li

� �
r i 1

ð�ri

r
i

tliðtÞ dGiðtÞ < max 0, a 2 �li

� �
r i 1 �ri�li : (A6)

Thus, if a ≥ �li , we would get ða 2 �liÞ�ri < ða 2 �liÞr i , which is a contradiction. Us-
ing this observation to simplify inequality (A6), we obtain the necessary condi-
tion (9).

Finally, suppose that aJiðr Þ 1 Λiðr Þhiðr Þ is quasi-convex. This implies that Ψi is
first convex and then concave on (0, 1]. The necessary condition implies that
Ψið0Þ ≥ Ψið1Þ 2 Ψ0ð1Þ. Together, these two facts imply that ΨiðxÞ ≤ ð1 2 xÞΨið0Þ,
for all x. QED

A3.3. Proof of Proposition 3

The first assumption guarantees that Ψi does not have a jump at 0 and hence is a
continuous function. Then, theorem 1 implies that effectively assortative match-
ing is optimal if and only if Vi(r) is nondecreasing in r. (Strictly speaking, this
conclusion does not follow from the statement of theorem 1 when Vi(r) is con-
stant on some intervals, since in this case co(Ψi) may have affine parts. However,
the proof of theorem 1 makes clear that on intervals [a, b] on which co(Ψi) is
affine and coðΨiÞ 5 Ψi , the designer is indifferent between random and assorta-
tive matching, and hence an assortative matching is also optimal.) QED

A3.4. Proof of Proposition 4

The conclusion is immediate from theorem 2.When there is fully randommatch-
ing in group i, the function cd(Ψi) is affine, and thus its slope is constant, equal to
Ψi(0) (since Ψið1Þ 5 0). By proposition 2, fully random matching requires that
�li > a, and under this inequality, we have that Ψið0Þ 5

Ð �ri
r
i
rliðr Þ dGiðr Þ. QED
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A3.5. Proof of Proposition 5

By the assumption that effectively assortative matching is optimal, we must have
cdðΨiÞðxÞ 5 ΨiðxÞ, except possibly for x ≤ x|

i if cd(Ψi)(x) is constant on ½0, x|
i �. By

direct calculation (and using the fact that for bounded-support, positive-density
distributions, the inverse hazard rate is 0 at the upper bound), we obtain
Ψ0

ið1Þ 5 2a�ri . The conclusion follows directly from theorem 2 and the observa-
tion that Ψi has a continuous derivative (by the assumptions that gi(r) and li(r)
are continuous and that gi(r) is strictly positive, so that hi(r) is also continuous).
When r i 5 0, we have that

Ψ0
ið0Þ 5 2a r i 2

1

giðr iÞ
� �

2 �li

1

giðr iÞ > 0,

and hence Ψi is increasing in the neighborhood of 0. Thus, cd(Ψi) is constant in
some initial interval and hence has a zero slope. When r i 5 0 for all i, by theo-
rem 2, all groups are allocated the lowest-quality objects. QED

A3.6. Proof of Proposition 6

The first part of the proposition follows immediately from theorem 2 by observ-
ing that the slope of cd(Ψ1) is constant, while the (absolute value of the) slope of
cd(Ψ0)(q) is increasing in q.

We prove the second part. For �q < 1, we need that jcdðΨ0Þ0ð1Þj >jcdðΨ1Þ0ð1Þj 5
Ψ1ð0Þ, since then theorem 2 implies that the highest qualities are allocated to
group 0. This yields the condition a�r0 >

Ð �r1
r
1
rl1ðrÞ dG1ðr Þ. For q > 0, we need that

jcdðΨ0Þ0ð0Þj < jcdðΨ1Þ0ð0Þj 5 Ψ1ð0Þ, since then theorem 2 implies that the lowest
qualities are allocated to group 0. Since group 0 features effectively assortative
matching, either jcdðΨ0Þ0ð0Þj 5 0 or cdðΨ0Þ0ð0Þ 5 Ψ0

0ð0Þ > 2ar 0. Thus, we obtain
the condition ar 0 <

Ð �r1
r
1
rl1ðrÞ dG1ðr Þ. QED
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